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Economists  modeling  climate  policy  face  an  array  of  choices  when  modeling  climate  change,
including  the role  of  uncertainty/ambiguity,  irreversibility,  and  tipping  points.  After  filtering
out estimated  cycles  due to  orbital  climate  forcing,  we  use  a threshold  quantile  autoregres-
sive  model  to  characterize  anomalies  in atmospheric  CO2 concentrations.  We  then  test
for local  instability  and  tipping  points,  and  we  characterize  the  stationary  distribution
of  anomalies.  We  find  evidence  of nonlinear  dynamics,  tipping  points  and  a non-normal
stationary  distribution.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The economic analysis of climate change is complicated by the vast array of policy choices and the complexity of the
natural system and the associated interactions with the economy (Nordhaus, 2008). While models have made great strides
forward over the past several decades, economists still face difficult choices of how to characterize the natural system.
For example, whether climate change is slow or abrupt, whether the distribution of damages has “thick” or “thin” tails
(Weitzman, 2009), the extent to which climate change is irreversible (Barrett and Dannenberg, 2012), and the existence of
tipping points (Lemoine and Traeger, 2014) all affect the optimal policy response. In this paper we examine the paleoclimate
data going back roughly 400,000 years to characterize historical climate dynamics, look for evidence of (ir)reversibility,
and present evidence of tipping points and critical slowing. We  use a novel econometric approach—a Threshold Quantile
Autoregressive model—that is ideal for characterizing this type of dynamic system. The results of this analysis informs the
choices made in constructing economic models of climate change.

Determining the existence of tipping points in any dynamic system is an empirical challenge for economists and natural
scientists alike. Examples abound: ecological systems (Carpenter et al., 1985), coupled human and natural systems (Liu
et al., 2007), or economic phenomena such as business cycles or unemployment (Galvao et al., 2011). Our application

utilizes paleoclimate ice core data to test for evidence of local instability in carbon dioxide (CO2) concentrations. Empirically
identifying the presence of tipping points is a nontrivial exercise. A tipping point may  exist in a zone of instability surrounded
by zones of stability: this implies an “escape” from the unstable zone around the tipping point and a movement toward the
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urrounding stable zones. Thus, our estimates of local instability can be interpreted as evidence of tipping points in CO2
ynamics.

A relevant issue is the potentially irreversible nature of temperature increases following shocks to atmospheric green-
ouse gas concentrations, raising concerns about possibly catastrophic implications of climate change. Recent research using
ncovered geological evidence (in sediment records) demonstrates a precedent of doubling atmospheric CO2 concentrations
5 million years ago which led to rapid oceanic acidification and global temperature increases of 5 ◦C over a relatively short
eological time period (Wright and Schaller, 2013). If climate change is irreversible, steps toward mitigation and adapta-
ion should be taken early if altering climate is costly. Alternatively, if it is not irreversible, the optimal policy may not
equire aggressive early action. Our empirical results help shed light on the nature and speed of dynamic adjustments in
O2, including how historical CO2 concentrations have evolved after local maxima or minima.

The existence of tipping points or evidence of reversibility are both critical to our understanding of climate change because
he optimal policy response may  vary depending on whether there are tipping points, the location(s) of tipping points, and
hether change is reversible. Once a threshold has been crossed, alternative policy responses such as geoengineering have

een proposed as solutions. In this context, for example, Barrett and Dannenberg (2012) argue that the existence of tipping
oints can turn the international environmental agreement game from a prisoner’s dilemma into a coordination game.

In addition, the shape of the probability distribution of historical CO2 concentrations is of interest as it can affect the
ptimal policy. While uncertainty and learning have been incorporated into climate models for decades (Kelly and Kolstad,
999), a recent debate (e.g., Weitzman, 2009) suggests that the shape of the distribution is critical. Specifically, the presence
f “thick tails” would suggest that the likelihood of rare (and possibly catastrophic) events would occur more frequently
han previously thought. We  aim to help inform this debate by characterizing the stationary distribution of CO2 based on
ata from the past 400,000 years.

We use a novel econometric approach to examine the dynamics of historical climate. The model, a Threshold Quantile
utoregressive (TQAR) model (see e.g., Galvao et al., 2011; Chavas, 2015) represents the distribution of CO2 conditional on its
revious history. We allow the lag effects to vary across quantiles of the distribution as well as with previous levels. Impor-
antly, this allows us to capture nonlinear dynamics and to characterize how lag effects of atmospheric CO2 concentrations
nfluence current levels at different points in the distribution. This, in turn, gives us a basis to investigate the presence of
hresholds and tipping points.

In what follows, we examine the nature of CO2 dynamics applied to the Vostok ice core data series, which contains CO2
oncentrations for the past 400,000 years, observed at roughly 1000 year intervals. We  focus on CO2 rather than reconstructed
emperature from climatic models because the historical atmospheric constituents are measured directly.1 We  demonstrate
hat our approach can characterize some well-known long-run cycles in climate known as Milankovitch cycles (Jansen et al.,
007). Loosely explained, these cycles, which are well understood by climate scientists, are caused by orbital irregularities
eccentricity), fluctuations in the axial tilt (obliquity), and axial directionality (precession).2 We  then examine the dynamics of
nomalies (defined as deviations from Milankovitch cycles) using a TQAR model. The estimated model exhibits slow-moving
onlinear dynamics.

Our empirical results indicate local instability in CO2 concentrations, indicating the presence of tipping points. We then
imulate the dynamic model using Markov Chains to obtain the stationary distribution and find that the stationary distri-
ution is non-normal. These two findings indicate that economists modeling climate change policy should account for the
resence of tipping points and reversibility.

. Preliminary analysis of climate cycles

Paleoclimatologists have studied the cyclical nature of climate in several settings, including geological deposits, atmo-
pheric constituents trapped in ice cores, and using fossil records to infer changes in historical temperatures and CO2
oncentrations (Solomon, 2007). Scientific consensus typically attributes the so-called Milankovitch Cycles to be a major
eterminant in long-run climate variation (Milanković, 1941). In the early 20th century, Milankovitch hypothesized that
limate was determined by changes in the Earth’s orbit. An excellent summary of empirical findings is in Kaper and Engler
2013). In addition to three well-known “Milankovitch Cycles”, a fourth cycle has been identified empirically (Petit et al.,
999).3 After the cycles are estimated, we de-cycle the data to identify anomalies.

Following Chavas et al. (2015), in order to capture the periodicity of the CO2 evolution over time we estimate the following
quation:
CO2(t) = a +
N∑

i=1

bi · sin
(

ki + 2�

ci
t
)

+ et, (1)

1 The deuterium, ıDice , and isotopic oxygen, ı18O, levels in sea ice are typically used to calculate local temperature changes from ice core data in a
rocedure outlined by Lorius and Merlivat (1975).
2 In addition to the three main effects documented in the literature, we also identify a fourth cycle with a shorter period. This fourth cycle is not common

n  the literature, though it has been detected using other statistical methods such as spectral analysis (e.g., Petit et al., 1999).
3 Also see Chavas et al. (2015).
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Table 1
Milankovitch cycle estimates.

Wavelength bounds in kyrs Cycle estimate in kyrs Cycles in kyrs as computed by Petit et al. (1999)

60–120 98.200*** 100
(1.000)

0–60  39.725*** 43
(0.161)

0–60 28.716*** 24
(0.086)

0–60  17.890*** 19
(0.033)

Notes: Cycles were determined using the R package “genalg” which randomly selected values for each of the parameters from a given parameter space.
See  Chavas et al. (2015) for details. Standard errors are calculated using a variance–covariance matrix for nonlinear LS estimators as in Judge et al. (1988)
pp. 640–43.

*** Asterisks denote significance at the 0.1 percent level.

Fig. 1. Actual vs. predicted Vostok CO concentrations. Notes: CO concentrations in p.p.m.v. as collected from 417,160 to 2342 years before present
2 2

(BP).  Actual values are in red. Predicted values (in green) are estimated as described in the text. The bottom panel shows the anomalies (residuals). (For
interpretation of the references to color in this figure legend, the reader is referred to the web  version of this article.)

where CO2(t) is the CO2 concentration from the Vostok ice core data, t is time (1000 years), bi is the amplitude, ki is the
horizontal shift, ci is the period of the ith cycle, i = 1, . . .,  N, N is the number of cycles, and et is an error term distributed with
mean zero and finite variance.

The estimation of the cycles in Eq. (1) can prove difficult. Indeed, using the least squares method, the estimation of the
parameters in (1) involves many local minima. To deal with this issue, Eq. (1) was estimated in two steps. First, we use a
genetic algorithm (Lucasius and Kateman, 1993, 1994) to identify parameter estimates yielding global least-squares minima.
Second, hypothesis testing was conducted to evaluate the relevant number cycles N in Eq. (1). The analysis presents strong
evidence indicating the presence of four cycles. See Chavas et al. (2015) for details. The econometric estimates of Eq. (1) are
presented in Table 1.

The parameter estimates reported in Table 1 indicate that the four cycles have periods of 98,200, 39,725, 28,716 and
17,890 years, respectively. These cycle periods have been investigated extensively in previous research (e.g., Petit et al.,
1999). For example, the first cycle (with a period around 100,000 years) is well-identified and has been associated with
the eccentricity of earth’s movements, and the second cycle (with a period of about 40,000 years) has been associated with
obliquity of the earth’s axial tilt. Our estimates of CO2 cycles do not control for other physical forcings, so there are likely
omitted variables; we proceed with that caveat in mind. Fig. 1 shows the fit of the preferred model along with the data.

Going beyond the Milankovitch cycles, we are interested in the dynamic process affecting the evolution of CO2 over
time. Our analysis proceeds evaluating the dynamics of the error term et in Eq. (1). Consistent with the literature on climate
change, the error term et is defined as an “anomaly” measuring the deviation of actual CO2 from its expected value along
our estimated cycles. A preliminary analysis of anomalies is presented in Table 2. It starts with a standard autoregressive
model of order m,  AR(m),  expressing current anomaly et as a linear function of past anomalies (et−1, . . .,  et−m), where we
invoke the “finite m memory” assumption. Since the data involve unequally spaced observations, we  introduce the variables
dt−i = [(yeart−i+1 − yeart−i)/1000 − 1], which reflects the of time difference between the observation t − i + 1 and t − i, i = 1, . . .,
m.  The variables d capture the effects of unequally spaced observations on CO2 dynamics.

Table 2 reports the estimates of two AR(m)  models: AR(1) and AR(2). We  also consider the possibility that the Autoregres-

sive coefficient in the AR(m)  models may  not be constant. We  partition the set of anomalies into three subsets defining three
regimes: the regime S1 when the anomaly e is in the interval (− ∞ , s1), the regime S2 when the anomaly is in the interval
[s1, s2), and the regime S3 when the anomaly is in the interval [s2, ∞), where s1 and s2 are threshold points corresponding
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Table  2
Preliminary analysis of anomalies.

Parameters AR(1) TAR(1) AR(2) TAR(2)

Intercept −0.083 0.832 −0.079 0.543
(0.461) (0.581) (0.461) (0.604)

et−1 0.839*** 0.950*** 0.811*** 0.954***
(0.032) (0.106) (0.055) (0.139)

et−2 0.024 0.011
(0.055) (0.138)

dt−1 −0.003 −0.005 −0.012 −0.015
(0.021) (0.022) (0.022) (0.023)

dt−2 0.023 0.027
(0.022) (0.023)

(et−1 − s1) * r1,t−1 −0.038 0.037
(0.161) (0.198)

(et−1 − s2) * r3,t−1 −0.323 −0.388*
(0.167) (0.197)

(et−2 − s1) * r1,t−2 −0.142
(0.195)

(et−2 − s2) * r3,t−2 0.077
(0.195)

Standard error 8.474 8.668 8.752 8.673
R  square 0.708 0.715 0.710 0.718
Adjusted R square 0.707 0.712 0.706 0.712
BIC  2610.856 2613.998 2621.000 2633.941
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ote: Standard errors are presented in parentheses below the parameter estimates. Standard errors are bootstrapped using the paired bootstrap method.
sterisks indicate the significance level: ***, ** and * represent significance at the 0.1%, 1%, and 5% levels, respectively.

espectively to the 1/3 and 2/3 quantile of the distribution of anomalies.4 In this context, we  define the dummy  variables
j,t−i = 1

{
et−i ∈ Sj

}
where rj,t−i is equal to 1 when et−i is in the jth regime. Then, introducing the variables [(et−i − s1) * r1,t−i]

nd [(et−i − s2) * r3,t−i] into the AR(m) model generates a Threshold Autoregressive model, TAR(m). A TAR(m) model allows
he autoregression parameters to vary across regimes. The estimates of the TAR(m) models, TAR(1) and TAR(2), are also
eported in Table 2.

The models reported in Table 2 show statistical evidence of dynamics in the anomalies. Indeed, the coefficient of et−1
s statistically significant in all four models, providing evidence that temporal adjustments to shocks are slow. That is, the
oefficients indicate that lagged anomalies are a significant determinant of current shocks. Interestingly, this coefficient
aries between 0.811 in the AR(2) model to 0.954 in the TAR(2) model. In addition, the dominant root of the four dynamic
ystems is always less than 1, indicating that all estimated models in Table 2 exhibit stable dynamics. We will obtain
dditional information on this issue from our TQAR model (see below).

Which of the four models in Table 2 provides a better representation of the dynamics of anomalies? Conducting hypothesis
esting can help this evaluation. Using an F-test of the joint significance of et−2 and dt−2 in the AR(2) model (i.e., comparing
R(1) and AR(2)), we obtain a F-value of 0.808, with a corresponding p-value of 0.446. Thus, we  fail to reject the AR(1)
odel (compared to AR(2)). Comparing AR(1) and TAR(1), we  obtain a F-value of 4.310, with a p-value of 0.014, providing

 strong rejection of AR(1) in favor of TAR(1). This provides statistical evidence that the autoregression parameters are not
onstant and vary across regimes. Finally, comparing TAR(1) and TAR(2), we obtain a F value of 0.885, with a p-value of
.473, indicating that we  fail to reject the TAR(1) model. The adjusted R2 and BIC provide weak support for the single lag
odels over the two-lag models. In order to test for the presence of thresholds and reversibility, we  require a TQAR model,
hich we address in the following section.

. TQAR analysis

We  now consider a Threshold Quantile Autoregression (TQAR) model applied to CO2 anomalies. A discussion of TQAR mod-
ls is presented in Galvao et al. (2011) and Chavas (2015). Having found support for a TAR(1) specification, we  examine below

 TQAR(1) specification. Let F(u|et−1) = Prob[et ≤ u|et−1] be the distribution function of et conditional on et−1 . The conditional
uantile function is defined as the inverse function Q (q|et−1) ≡ inf

c

{
c|F(c|et−1) ≥ q

}
for q ∈ (0, 1). This includes the condi-
ional median when q = 0.5. The distribution function F(·) and the quantile function Q(·) provide general characterizations of
he dynamics of the anomalies et.

4 The analysis presented below was also conducted using different threshold points (s1, s2). Our key qualitative findings (including local instability) were
ound  to be robust to the choice of (s1, s2).
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Table 3
Estimation of TQAR(1) model for selected quantiles.

Quantile q = 0.1 q = 0.3 q = 0.5 q = 0.7 q = 0.9

Intercept −7.782*** −3.050*** 0.128 3.989*** 10.210***
(0.895) (0.520) (0.627) (0.726) (1.318)

et−1 0.902*** 0.940*** 0.904*** 0.931*** 1.307***
(0.182) (0.091) (0.115) (0.135) (0.258)

dt−1 0.057 0.021 −0.019 0.012 0.062
(0.050) (0.024) (0.044) (0.055) (0.079)

(et−1 − s1) * r1,t−1 0.036 0.085 0.071 −0.038 −0.611
(0.253) (0.142) (0.183) (0.238) (0.454)

(et−1 − s2) * r3,t−1 −0.394 −0.389* −0.111 −0.231 −0.708
(0.294) (0.174) (0.227) (0.201) (0.371)

Note: Standard errors are presented in parentheses below the parameter estimates. Standard errors are bootstapped using the paired bootstrap method.
Asterisks indicate the significance level: ***, ** and * represent significance at the 0.1%, 1%, and 5% levels, respectively.

Table 4
Hypothesis testing under the TQAR(1) model.

Hypothesis test F-value Deg of freedom p-value

Testing TQAR(1) vs. QAR(1) for selected quantiles 1.772** (32, 3217) 0.005
q  = 0.1 1.361 (2, 356) 0.258
q  = 0.2 6.999*** (2, 356) 0.001
q  = 0.3 8.587*** (2, 356) 0.000
q  = 0.4 3.364* (2, 356) 0.036
q  = 0.5 0.728 (2, 356) 0.484
q  = 0.6 3.038* (2, 356) 0.049
q  = 0.7 1.658 (2, 356) 0.192
q  = 0.8 1.766 (2, 356) 0.173

q  = 0.9 1.641 (2, 356) 0.195

Note: Standard errors are bootstrapped using the paired bootstrap method. Asterisks indicate the significance level: ***, ** and * represent significance at
the  0.1%, 1%, and 5% levels, respectively.

When evaluated in the qth quantile, we consider the TQAR(1) model specified as

Q (q|et−1) = ˛q + et−1 ∗ ˇq + dt−1 ∗ �q + (et−1 − s1) ∗ r1,t−1 ∗ ˇ1q + (et−1 − s2) ∗ r3,t−1 ∗ ˇ3q, (2)

where the variables (d, s, r) are defined as in the previous section. As in all quantile regression models (e.g., Koenker, 2005), the
parameters (˛q, �q, ˇq, ˇ1q, ˇ2q) are allowed to vary across quantiles q. This is more general than the standard autoregressive
(AR) models. In addition, the specification (2) allows for three dynamic regimes. The parameter ˇq in Eq. (2) captures the
marginal effect of et−1 when et is located in the second quantile (regime S2) of its distribution. But this marginal effect
becomes (ˇq + ˇ1q) when et is in its first quantile (regime S1) and (ˇq + ˇ3q) when et is in its third quantile (regime S3).

The TQAR model (2) includes a number of well-known models as special cases. First, (2) reduces to the Quantile Autore-
gression (QAR) model proposed by Koenker and Xiao (2006) when ˇ1q = ˇ3q = 0, i.e., when the parameters are the same in
all three regimes. Note this still allows the parameters to vary across quantiles q . If in addition, the parameters are the same
across all quantiles q, then (2) reduces to a standard Autoregression (AR) model where the regression parameters are treated
as constant.

The TQAR model (2) is flexible as it allows for two forms of nonlinear dynamics. First, (2) allows for the effects of et−1 to
vary with quantile q. This is of interest if dynamic adjustments depend on the nature of current shocks. Second, (2) allows for
the effects of et−1 to vary depending on the regime where et−1 is located. This is of interest if dynamic adjustments depend
on the nature of past shocks. Neither of these properties is present in the standard autoregression (AR) model; and only the
first characteristic is present in the quantile autoregressive (QAR) model. Being linear in the parameters, model (2) can be
estimated as a quantile regression model. The estimation method and the statistical properties of its estimator have been
analyzed in previous literature (e.g., Koenker, 2005; Koenker and Xiao, 2006).

The TQAR model allows one to characterize nonlinear dynamics because it allows adjustments to vary with the nature
of past and current shocks. Furthermore, in contrast to the TAR model, the TQAR model allows the effects vary by quantile.
The presence of tipping points can be characterized by zones of instability surrounded by zones of stability, which the TQAR
model can identify.

The estimation of a TQAR(1) model (2) is reported in Table 3 for selected quantiles, q = (0.1, 0.3, 0.5, 0.7, 0.9). In Table 3, the
coefficient of the lagged anomaly et−1 is found to be statistically significant across all reported quantiles. Again, this provides
strong evidence of dynamics in anomalies. In addition, Table 4 shows that, at least for the quantile q = 0.3, the Autoregression

parameters are not constant across regimes.

How appropriate is the TQAR(1) model specification? To help answer this question, hypothesis testing is conducted on
the TQAR(1) model. First, we test the joint significance of whether the parameters across quantiles q = (0.1, 0.2, . . .,  0.8,
0.9). Testing the joint significance of these parameters, the F-statistic is 1.77, which is significant at the 1 percent level. This
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Fig. 2. Distribution function of anomalies.

rovides evidence that dynamics vary across quantiles, thus supporting our quantile approach. Second, for selected quantiles,
e test the null hypothesis that the threshold parameters (et−1 − s1) * r1,t−1 and (et−1 − s2) * r3,t−1 are jointly significant; that

s, we test whether parameters are constant across regimes. This amounts to testing the TQAR(1) model versus a QAR(1)
odel. These test results are reported in Table 4. They show strong evidence against QAR(1) and in favor of the TQAR(1)
hen q = (0.2, 0.3, 0.4, 0.6). These results support the argument that the TQAR(1) model provides an appropriate and flexible

epresentation of the dynamics of CO2 anomalies. They document the presence of significant nonlinear dynamics in CO2
nomalies, with dynamics varying with both current shocks and past shocks. This identifies the presence of asymmetric
ynamic adjustments in CO2 evolution across regimes.

Next, we investigate the implications of our TQAR(1) estimates. The rest of our analysis involves estimates of the TQAR(1)
odel after the model has been re-estimated for all quantiles q ∈ (0, 1). First, using the parameter estimates for all quantiles,
e simulate the predicted distribution function of the anomalies under three scenarios: D = 1, 2, 3. The scenarios depend on

he value taken by et−1 and its location on the distribution function of anomalies: scenario 1 (D = 1) is when et−1 is in regime
1 (i.e., in the lower tertile); scenario 2 (D = 2) is when et−1 is in regime S2 (i.e., in the middle tercile); and scenario 3 (D = 3) is
hen et−1 is in regime S3 (i.e., in the upper tercile). The estimated distribution function of the anomalies is presented in Fig. 2
nder these three scenarios. As expected, in the presence of slow adjustments, the distribution function of CO2 anomalies
hifts to the right as one moves from scenario 1 (D = 1) to scenario 2 (D = 2) to scenario 3 (D = 3). All three estimates show
hat the simulated distributions of anomalies exhibit a range from about −30 to +30.

As noted above, in the TQAR(1) model, the estimated coefficient of the lagged anomaly et−1 varies both across quantiles
 and across regimes (S1, S2, S3). Recall that regime S1 occurs when the anomaly et−1 is in the lower quantile [0, 1/3) of
ts distribution, regime S2 when the anomaly is in the quantile [1/3, 2/3), and regime S3 when the anomaly is in the upper
uantile [2/3, 1]. Also note that, in the TQAR(1) model, the marginal effect of et−1, ∂et/∂et−1, provides useful information about
he nature and speed of dynamic adjustments. In this context, the logarithm of |∂et/∂et−1| measures the rate of divergence of
earby dynamic trajectories of anomalies. It follows that the dynamics are locally stable (unstable) if |∂et/∂et−1| is less than

 (greater than 1). Noting that |∂et/∂et−1| is the root of the dynamic system, local stability (instability) of the system occurs
hen its root is less than 1 (greater than 1). Under nonlinear dynamics, this evaluation is local and depends on the evaluation
oint. Applied to Table 3, we obtain important results. In Table 3, when et−1 is in regime S2, the estimated coefficient of et−1

n the q = 0.9 quantile is 1.307, indicating a zone of local instability. In this zone, nearby trajectories diverge as anomalies
end to escape from this zone. Table 3 also shows that the coefficients of et−1 are typically less than one in other quantiles,
ocumenting zones of stability where nearby trajectories of anomalies converge.

We evaluated the root of the dynamic system (as measured by |∂et/∂et−1| for all quantiles and all regimes. The results are
resented in Fig. 3 which shows some interesting patterns. First, the root tends to be less than 1 and smaller in regime S3,
ndicating that dynamic adjustments are locally stable when et−1 is in the upper quantile of its distribution. Second, when
t−1 is in regime S1, the root is close to 1 for all quantiles q ∈ (0, 0.6), but it becomes much smaller than 1 when q is around
.9. Thus, in regime S1, the dynamics appears to be locally stable but only in the upper tail of the distribution. Third, when
t−1 is in regime S2, the root is close to 1 for all quantiles q ∈ (0, 0.8), but it becomes greater than 1 (corresponding to local
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Fig. 3. Root for TQAR(1).

instability) when q is around 0.9. This reflects that dynamic adjustments tend to be qualitatively different across regimes,
with evidence of dynamic local instability especially under regime S2 and when q is around 0.9. These results reflect the
presence of nonlinear dynamics, as the dynamics of anomalies vary with both current shocks and past shocks.

Importantly, our estimated TQAR model finds evidence of a zone of instability surrounded by zones of stability. This
identifies the existence of tipping points. Indeed, a tipping point arises when dynamics moves the system away from a
particular zone. This occurs when a zone of instability is surrounded by zones of stability, implying an “escape” from the
unstable zone around the tipping point and a movement toward the surrounding stable zones. In this context, our estimates
of local instability can be interpreted as evidence of tipping points in CO2 dynamics. Our analysis indicates the presence of a
tipping point when the previous shock et−1 is in regime S2 followed by positive shocks for et (i.e., when et is located around
quantile 0.9).

4. Simulations

The TQAR model estimated in the previous section provides a representation of nonlinear dynamics for CO2 anomalies.
What does our analysis imply for the evolution of CO2? To gain additional insights, we  proceed by simulating our estimated
model. This is done through discretizing the state space and rewriting our TQAR(1) model as a Markov chain model, which
is then used to simulate the long-run evolution of the distribution of anomalies. The discretization is done by decomposing
the observed range of CO2 anomalies into 80 equally-spaced intervals, with each interval corresponding to one point in the
Markov chain representation. The Markov chain model takes the form

Pt = APt−1 (3)

where Pt =

⎡
⎣

P1t

P2t

...

⎤
⎦ is a (80 × 1) vector of probabilities where Pjt is the probability of being at point j at time t, and where

A =

⎡
⎣

a11 a12 . . .
a21 a22 . . .

...
...

. . .

⎤
⎦ is a (80 × 80) transition probability matrix where aij is the probability of moving from point j at time

t − 1 to point i at time t such that
∑

iaij = 1 for all j.

We evaluate the Eigenvalues of the matrix A. The 5 largest Eigenvalues are real and take the values (1, 0.863, 0.755, 0.643,

0.531). Finding that the largest Eigenvalue (1) is unique indicates that the Markov chain has a unique stationary distribution
(Meyn and Tweedie, 2012). Furthermore, finding that the second largest Eigenvalue is 0.863 demonstrates that dynamic
adjustments are slow.
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Table  5
Transition probabilities.

Transition probabilities pij Initial regime

S1 S2 S3

Transition regime S1 0.776 0.159 0.019
S2 0.209 0.622 0.227
S3 0.015 0.219 0.754
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Fig. 4. Simulated probabilities.

Next, we simulate the evolution of the probability function using a uniform distribution as starting values, knowing the
imulated probabilities will eventually converge to a stationary probability function. Evaluated at stationary probabilities,
e calculated the probabilities of transitioning between the three regimes (S1, S2, S3). This gives a 3 × 3 transition matrix,
here an element pij is the probability of moving from regime Si to regime Sj, such that �jpij = 1 for i = 1, 2, 3. This transition
atrix is reported in Table 5. Table 5 demonstrates a high probability of staying within any given regime. But it also shows

hat there is a positive probability of switching from any regime j to regime i.
Finally, the speed of convergence of the probabilities of the anomalies to their stationary values is presented in Fig. 4 after

000 years (t = 2), 20,000 years (t = 10) and 200,000 years (t = 200). Fig. 4 illustrates that the convergence to the stationary
istribution is slow. For example, only a fraction of the eventual probability adjustments take place during the first 2000
ears. Second, Fig. 4 shows that the long-term probability function of anomalies has a unique maximum around 0, but it is
kewed to the left. Testing whether the probability function is Normally distributed, we used the Shapiro–Wilk Normality Test
Shaphiro and Wilk, 1965). The test statistic is W = 0.848, with a p-value less than 0.001, showing strong statistical evidence
gainst the Normal distribution. Thus, the estimated non-linear dynamics reported above contributes to a departure from
ormality and to the presence of left-skewness. The implications of our findings are further explored next.

. Discussion

We  evaluated the dynamics of anomalies defined as deviations of observed CO2 concentrations from estimated
ilankovitch cycles. Using a threshold quantile autoregression (TQAR) model, we  find strong evidence of nonlinear dynam-

cs. The advantage of the TQAR model is that it allows the dynamics to vary by regime and by quantile. Indeed, dynamics
an vary with both past shocks (as captured by regime changes) and with current shocks (as captured by changes across
uantiles). As such, the TQAR model can capture the nonlinear dynamics of the climate system without placing a priori

tructural restrictions on the system.

We  find statistical evidence that the dynamics of anomalies vary both across regimes and across quantiles. As such,
ur analysis indicates that linear dynamics would not provide an accurate representation of the evolution of CO2 con-
entrations over time. We  find that dynamic adjustments are stable when lagged anomalies are in the upper quantile of
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the distribution. We  also find evidence of local instability, especially when lagged anomalies are around the median and
when current anomalies are in the upper quantile. Finally, we find that, overall, dynamic adjustments tend to be slow,
indicating that the impact of current shocks can take a long time to develop. This highlights difficulties in using recent infor-
mation to assess the longer-term impacts of current shocks, making it challenging to evaluate the implications of climate
policy.

Using Markov Chain simulations, we investigate the implications of our dynamic analysis for the stationary distribution
of anomalies. Due to slow-moving dynamics, we  find that the rate of convergence to the stationary distribution to be slow.
Our estimates of the shape of the stationary probability function of anomalies shows a departure from Normality, as the
distribution is skewed to the left.

The shape of the stationary probability function does not seem to provide information on the presence of tipping points.
Note this finding can arise when tipping points are located in specific zones of local instability that depend on past history.
For example, our TQAR results showed evidence of local instability when negative shocks for et−1 are followed by positive
shocks for et. But the different dynamic effects of et−1 and et are no longer present in the stationary distribution. Thus, our
stationary distribution cannot reveal the local instability uncovered in our TQAR model, which demonstrates the usefulness
of our TQAR specification in the investigation of tipping points.

Note that there are scenarios where the presence of tipping points can affect the stationary probabilities. This can occur
when the tipping points are in zones of instability involving barriers that are difficult to cross. In this case, falling on one
side of an unstable zone would make it difficult to reach the other side, thus creating patterns of dynamic irreversibility.
Concerns about possible irreversible dynamics have been raised in the context of climate change. Under irreversibility, one
would expect to see the stationary probability function to exhibit low probabilities in zones of local instability (as dynamics
would imply escaping from these zones, with a low probability of returning). Our estimated stationary probabilities reported
in Fig. 4 do not show such patterns. This seems due to two factors: (1) our estimated zones of instability are not very large
(see Fig. 3); and (2) the odds of jumping from one side of an unstable zone to another side appear to be sufficiently high.
These two factors reduce the likelihood of observing patterns of irreversibility in the long run, thus contributing to hiding the
zones of instability in the stationary probability function. In other words, while our analysis finds evidence of local instability
and tipping points, the results reported in Fig. 4 indicate that the associated tipping points do not contribute to generating
significant dynamic irreversibility.

Our analysis raises several important questions. How desirable are the different values by CO2 as climate change affects
human welfare? What happens around the tipping points we associated with zones of local instability? What are the
circumstances (e.g., policy affecting CO2 emissions) that may  affect the dynamic evolution of CO2 in these neighborhoods?
And what are the possibilities for moving into or out of these neighborhoods? To the extent that one of these neighborhoods
could be identified as being “less desirable”, trying to avoid it would become an important policy objective. As such, our
findings can help inform the current debate about tipping points and climate policy.

Our analysis has uncovered new evidence of nonlinear dynamics and tipping points in the evolution of atmospheric
CO2 concentrations. At this point, it remains unclear what specific aspects of climate dynamics are generating our
results. While we have made headway in developing a methodology to examine the nonlinear dynamics of historical cli-
mate, there is still much that is left for future research, including looking at reconstructed temperature or atmospheric
methane series concomitantly with CO2 levels; examining behavior at alternative sites; identifying the geophysical pro-
cesses that can induce nonlinear dynamics in climate evolution; and modeling jointly the paleoclimate in the North and
South.

References

Barrett, S., Dannenberg, A., 2012. Climate negotiations under scientific uncertainty. Proc. Natl. Acad. Sci. 109 (43), 17372–17376.
Carpenter, S.R., Kitchell, J.F., Hodgson, J.R., 1985. Cascading trophic interactions and lake productivity. BioScience, 634–639.
Chavas, J.-P., 2015. Modeling population dynamics: a quantile approach. Math. Biosci. 262, 138–146.
Chavas, J.-P., Grainger, C., Hudson, N., 2015. Finding a Fourth “Milankovitch” Cycle in a Reduced-form Regression Framework. Working Paper.
Galvao Jr., A.F., Montes-Rojas, G., Olmo, J., 2011. Threshold quantile autoregressive models. J. Time Ser. Anal. 32 (3), 253–267.
Jansen, E., Overpeck, J., Briffa, K.R., Duplessy, J.C., Joos, F., Masson-Delmotte, V., Ramesh, R., 2007. Paleoclimate. Climate Change 2007: The Physical Science

Basis.  Working Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
Judge, G.G., Hill, R.C., Griffiths, W.,  Lutkepohl, H., Lee, T.-C., 1988. Introduction to the Theory and Practice of Econometrics.
Kaper, H., Engler, H., 2013. Mathematics and Climate. Siam.
Kelly, D.L., Kolstad, C.D., 1999. Bayesian learning, growth, and pollution. J. Econ. Dyn. Control 23 (4), 491–518.
Koenker, R., 2005. Quantile Regression. Number 38. Cambridge University Press.
Koenker, R., Xiao, Z., 2006. Quantile autoregression. J. Am.  Stat. Assoc. 101 (475), 980–990.
Lemoine, D., Traeger, C., 2014. Watch your step: optimal policy in a tipping climate. Am.  Econ. J.: Econ. Policy 6 (1), 137–166.
Liu, J., Dietz, T., Carpenter, S.R., Alberti, M., Folke, C., Moran, E., Pell, A.N., Deadman, P., Kratz, T., Lubchenco, J., et al., 2007. Complexity of coupled human

and  natural systems. Science 317 (5844), 1513–1516.
Lorius, C., Merlivat, L., 1975. Distribution of Mean Surface Stable Isotopes Values in East Antarctica; Observed Changes with Depth in Coastal Area.

Technical Report, CEA Centre d’Etudes Nucleaires de Saclay, 91-Gif-sur-Yvette (France). Dept. de Recherche et Analyse.
Lucasius, C.B., Kateman, G., 1993. Understanding and using genetic algorithms. Part 1. Concepts, properties and context. Chemom. Intell. Lab. Syst. 19 (1),
1–33.
Lucasius, C.B., Kateman, G., 1994. Understanding and using genetic algorithms. Part 2. Representation, configuration and hybridization. Chemom. Intell.

Lab.  Syst. 25 (2), 99–145.
Meyn, S.P., Tweedie, R.L., 2012. Markov Chains and Stochastic Stability. Springer Science & Business Media.
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