Estimating your Cost of Production for Growing Irrigated Corn
 Paul D. Mitchell

Agricultural and Applied Economics
UW-Madison and UW-Extension
Hancock ARS February 1, 2006

Goal Today

\lrcorner Present basic cost concepts and methods to estimate cost of production

- Simple method to estimate a typical cost of production for a farm your size
\lrcorner Work through an example
- Cost of Center Pivot Irrigation
- Returns to Irrigated Corn

Major cost categories for crop production

\lrcorner Variable Input Costs

- Seed, fertilizer, herbicides
\lrcorner Machinery Costs
- Fixed: depreciation, capital cost
- Variable: maintenance, fuel, lubrication
\lrcorner Land, Labor, and Management
- Often unpaid costs of your time and your management skill and energy

Variable Input Costs

\lrcorner Amount of each input times its price
\lrcorner Add them all up to get variable input costs

- Simplified examples for corn

د Seed: $\$ 110 /$ bag $\times 0.425$ bag/ac $=\$ 46.75 / \mathrm{ac}$ (80,000 seeds/bag, 34,000 seeds/ac)

- Nitrogen: 200 lbs $\mathrm{N} / \mathrm{ac} \times \$ 0.35 / \mathrm{lbs}=\$ 70 / \mathrm{ac}$
- Prowl: $1.5 \mathrm{lbs} / \mathrm{ac}=\$ 9.75 / \mathrm{ac}$

Machinery Costs

」 Substantial component of costs (25-40\%)
\lrcorner Difficult to measure/estimate: user specific
」 Variable Cost, Use-Related Cost, Operating Cost

- Costs due to using the machinery
- Fuel, lube, maintenance, use-related repairs and labor
\perp Fixed Cost, Time-Related Cost, Overhead Cost
- Costs paid whether you use the machinery or not
- Interest, insurance, taxes, housing
- Depreciation: both a variable and fixed cost

Machinery Costs

\lrcorner Best method: keep accurate records and use them to determine your actual costs - Estimate Costs

When do not have records, or want to compare costs for different options

- Economic Engineering
- Custom Rates

Economic Engineering Approach

I Estimate machinery costs based on careful engineering data collection
Use the machinery and carefully document urepairs, maintenance, fuel//ubrication

- speed, turning time, labor
\lrcorner Develop formulas to estimate fixed and variable machinery costs

Economic Engineering Approach

」Farm Machinery Economic Cost Estimates for 2005, Lazarus and Selley at U of MN, Center for Farm Financial Management

\lrcorner Numbers seem too low?

Machinery Cost Example

」 What does it cost to run a chisel plow？
\lrcorner Lazarus and Selley 2005 （23 ft）：\＄6．81／ac
」Iowa 2005 Custom Rate $\$ 11.05 / \mathrm{ac}$
－Wisconsin 2004：\＄13．30／ac
－Indiana 2004 Custom Rate $\$ 11.78 / a c$
\lrcorner South Dakota（East）Custom Rate：\＄10／ac
－Missouri 2003 Custom Rate \＄10／ac（\＄12．10／ac heavy soil）
」 SW Minnesota 2001：\＄10．83／ac

Economic Engineering Approach

\lrcorner Ron Shuler (UWEX/BSE): Updated A3510 "Estimating Ag. Field Machinery Costs"
\perp Print copy with worksheets, spreadsheet

- Estimate costs when no records
\lrcorner Recommends using actual data to determine your actual machinery costs

Why not just use Custom Rates?

\lrcorner Custom rates not good estimates of typical farmer costs-usually too low as well

- Run over more acres, spread fixed costs
- Volume discounts or search for best price, so lower purchase price
- More efficient operators
- Family/friends not charge enough

Discounted because not perfect timing

Converting Custom Rates to your Cost

\lrcorner Adjusting custom rates is an easy way to estimate typical machinery costs
」 K. Dhuyvetter and T. Kastens at Kansas State University developed a formula using KFMA cost data and custom rates
\lrcorner Scale Factor $=1.241+(33.026 /$ acres $)$

- Your Cost = Scale Factor x Custom Rate
\lrcorner Acres is annual acres operated

Caveats

\lrcorner Custom rates have wide ranges-call around, use WI publication and those from other states
\lrcorner Formula to adjust custom rates not perfect
\lrcorner Use these machinery costs as a guide, not gospel
\lrcorner Need good records to estimate your cost's
\lrcorner Returns to land and Management does not include Farm Program payments

- Government Payment Calculator at http:///www.afpc.tamu,edu/ to estimate

Irrigation Summary

SUMMARY
ANNUAL OWNERSHIP COSTS \$/irg ac
Depreciation Pivot \& Well $\quad \$ 31.17$
Interest/Opportunity Cost $\$ 51.80$
Insurance
TOTAL ANNUAL OWNERSHIP COST $\$ \$ 86.67$
OPERATING COSTS
\$/irg ac
Electric Power
\$29.68
Labor run/manage pivot
\$1.33
Maintenance $\$ 11.10$
TOTAL ANNUAL OPERATING COST $\$ 42.11$ TOTAL COST $\$ 128.78$

Irrigated Corn Summary

SUMMARY \$/ac

Total Machinery Costs $\$ 101.99$ Total Variable Input Costs $\$ 165.16$

Total Irrigation Costs \$128.78
Total Variable Harvest Costs $\$ 44.88$
TOTAL COST $\$ 440.81$
Average Yield (bu/ac) 220
Expected Price (\$/bu) \$2.00
Expected Revenue (\$/ac) \$440.00
Net Returns to Land \& Management - \$0.81

Summary

\lrcorner Can make money on irrigated field corn
\lrcorner Keep costs low (inputs, irrigation, machinery)
\lrcorner Get good price - good marketing
\lrcorner Crop insurance (GRP/GRIP + Hail) and forward pricing to remove some of the yield \& price risk

Questions ???

Paul Mitchell

Agricultural and Applied Economics
UW-Madison and UW-Extension
(608) 265-6514
pdmitchell@wisc.edu

My Extension Homepage www.aae.wisc.edu/mitchell/extension.htm

