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Abstract

A mathematical expression known as Benford’s law provides an example of an unex-

pected relationship among randomly selected sequences of first significant digits (FSD).

Newcomb (1881), and later Benford (1938), conjectured that FSD’s would exhibit a

weakly monotonic decreasing distribution and proposed a frequency proportional to

the logarithmic rule. Unfortunately, the Benford FSD function does not hold for a

wide range of scale-invariant multiplicative data. To confront this problem we use

information-theoretic methods to develop a data-based family of alternative Benford-

like exponential distributions that provide null hypotheses for testing purposes. Two

data sets are used to illustrate the performance of generalized Benford-like distribu-

tions.

∗Marian Grendar is an assistant professor, Dept. of Mathematics, FPV UMB, Banska Bystrica; Inst.
of Mathematics and CS of Slovak Academy of Sciences, Banska Bystrica; Inst. of Measurement Sciences
SAS, Bratislava, Slovakia, e-mail: marian.grendar@savba.sk. George Judge is a professor in the Graduate
School, 207 Giannini Hall, UC Berkeley, Berkeley CA 94720, e-mail: judge@are.berkeley.edu. Laura
Schechter is an assistant professor, Agricultural and Applied Economics, UW Madison, Madison, WI 53706,
e-mail: lschechter@wisc.edu. The order of the authors’ names has only alphabetical significance. Laura
Schechter is the corresponding author. Thanks to Wendy Cho and Maximilian Auffhammer for help with the
computer code and to Joanne Lee, Lawrence Leemis, Douglas Miller, Steven J. Miller, and John Morrow for
helpful comments. The first author received funding from VEGA grant 1/3016/06 and Australian Research
Council grant DP0210999 while the third author received funding from USDA Hatch grant 142-1038.

1



Keywords: Benford’s law, first significant digit phenomenon, relative frequencies,

information-theoretic method, empirical likelihood, minimum-divergence distance mea-

sure.

AMS Classification: Primary 62E20.

JEL classification: C10, C24.

1 Introduction

Theoretical and applied-data outcomes involving unanticipated results have been important

in the search for quantitative scientific knowledge. In this surprise-knowledge search con-

text, a mathematical expression known as Benford’s law provides a useful example of an

unexpected relationship among randomly selected sequences of positive real numbers - first

significant digits (FSD, or the first non-zero digit found when reading a number from left to

right). This FSD phenomenon was first noticed by Newcomb (1881) who observed that the

pages in logarithmic tables for numbers starting with 1 were significantly more worn than

those starting with 9. Based on this discovery, he conjectured that FSD distributions over a

variety of data sets would not be uniform and would exhibit a weakly monotonic decreasing

distribution. From this conjecture he created a formula reflecting the distribution of FSD’s.

Fifty years later, Benford (1938) noted the same FSD characteristics in certain data sets and

proposed that the digits, d = 1, 2, ..., 9, appear as FSD’s with frequency proportional to the

logarithmic rule

P (d = 1, 2, ..., 9) = log
10

(1 + d−1) (1.1)

that results in a uniform distribution in logarithmic space. Benford gave the resulting dis-

tribution (0.301, 0.176, 0.125, 0.097, 0.079, 0.067, 0.058, 0.051, 0.046) a theoretical basis by

showing it could evolve from a mixture of uniform distributions.

Many others have attempted to rationalize Benford’s logarithmic formula and provide a
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stronger theoretical explanation for the empirically discovered FSD phenomenon. Overviews

of the history and a sampling of the empirical and theoretical results include Raimi (1976),

Diaconis (1977), Schatte (1988), Hill (1995), Scott & Fasli (2001), Rodriguez (2004), Hill &

Schürger (2005), Berger & Hill (2006), and Miller & Nigrini (2006). As Rodriguez (2004)

notes, Raimi (1976) contends that Benford’s mixture scheme is rather arbitrary and suggests

a wide variety of FSD distributions from mixtures of uniform distributions.1 However, Ben-

ford’s distribution continues to be the null hypothesis of choice for those tracking questions

of human influence on or tampering with data. Papers using Benford’s law to check the va-

lidity of purportedly scientific data in the social and physical sciences include Varian (1972),

Nigrini (1996, 1999), de Marchi & Hamilton (2006), Nigrini & Miller (2006), and Judge &

Schechter (2006).

Benford’s law postulates that lower digits are more likely to appear as FSD’s than higher

ones and specifies a particular FSD distribution (1.1) that captures this phenomenon. Al-

though Benford’s logarithmic FSD function may be consistent with some data sets, it seems

questionable that it holds for all sets of numerical data. As Scott & Fasli (2001) note, only

about half of the data sets in Benford’s original paper provide reasonably close matches.

Leemis et al. (2000) and others have noted an elementary link between the underlying ba-

sic data and FSD distributions. Consequently, it seems reasonable that, in general, the

scale-invariant multiplicative nature of the underlying distribution of the data induces the

Benford-like FSD distribution (see Pietronero et al. 2001). Viewed in this context, the FSD

distribution provides just another way to characterize the information in the underlying data

distribution. Thus, in contrast to Benford’s parametric distribution, using a family of FSD

data-based distributions that incorporate the underlying characteristics of a data set may

1Articles as early as Hamming (1970) and as recent as Miller & Nigrini (2006) have noted that the product
of two distributions is usually closer to Benford’s law than either of the original distributions. As the number
of terms increases, the resulting observation converges to Benford. The latter article reviews some of the
literature related to this issue.
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be a superior way to learn about and capture the data’s unknown FSD distribution.

Within this context, the purpose of this article is to suggest, using information theo-

retic methods, a family of data-based Benford-like FSD distributions that are based on a

first moment of the FSD data. The resulting family of distributions, based on a minimum-

divergence distance measure and FSD moment conditions, exhibits weakly monotonically

decreasing FSD probabilities and yields generalized Benford-like alternative exponential dis-

tributions as null hypotheses for use in confronting actual data probabilities. The same

functional dependency between FSD’s which we express in the form of an exponential or

power law defines different functions depending on the first-moment domain of the observed

data sample.

The organization of the paper is as follows. In Section 2 the identification of an FSD dis-

tribution is reformulated as an ill-posed inverse problem and information-theoretic solutions

are suggested. In Section 3 empirical likelihood methods (Owen 2001) are demonstrated and

investigated as a basis for developing data-adaptive FSD distributions. In Section 4, different

data sets are used to illustrate the reach of the empirical likelihood information-theoretic

method in recovering data-specific FSD distributions and the use of the data-based FSD dis-

tributions for checking tampering, behavioral, and human influence characteristics observed

in data outcomes. In Section 5, methodological and applied implications are discussed.

2 Problem Reformulation and Solution

In identifying a unique FSD distribution to associate with sequences of positive real numbers,

assume that on trial i = 1, 2, . . . , n, one of nine digits d1, d2, . . . , d9 is observed with pj as the

probability that the jth digit is observed. Suppose after n trials we are given first-moment
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information in the form of the average value of the FSD:

9
∑

j=1

djpj = d̄. (2.1)

Given this first-moment information and the inverse problem of identifying an FSD distri-

bution, we seek the best predictions of the unknown probabilities p1, p2, . . . , p9. It is readily

apparent that there is one data point and nine unknowns so, from an information-recovery

standpoint, the resulting inverse problem is ill-posed. Consequently, there exist an infinite

number of possible discrete probability distributions with d̄ ∈ [1, 9]. For illustrative pur-

poses, it might be useful to consider this problem within the context of a nine-sided die. The

sample of realized values - sequences of positive real numbers - are then the result of rolling

the die n times.

Based only on the information
∑

9

j=1
djpj = d̄,

∑

9

j=1
pj = 1, and 0 ≤ pj ≤ 1, the problem

cannot be solved for a unique solution. Consequently, a function must be inferred from

insufficient information when only a feasible set of solutions is specified. In such a situation

it would seem useful to have an approach that allows the investigator to use sample-based

information recovery methods without having to choose, as in Equation (1.1), a parametric

family of probability densities on which to base the FSD function. In other words, we seek

a way to reduce the infinite dimensional nonparametric problem to a finite dimensional one.

2.1 An Information-Theoretic Approach

One way to solve this ill-posed inverse problem for the unknown pj without making a large

number of assumptions or introducing additional information is to formulate it as an ex-

tremum problem. This type of extremum problem is, in many ways, analogous to allocating

probabilities in a contingency table where pj and qj are the observed and expected proba-

bilities respectively of a given event. A solution is achieved by minimizing the divergence
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between the two sets of probabilities, optimizing a goodness-of-fit (pseudo-distance measure)

criterion subject to data-moment constraint(s). One possible set of divergence measures is

the Cressie-Read (CR) power divergence family of statistics (Cressie & Read 1984, Read &

Cressie 1988, Baggerly 1998):

I(p,q, γ) =
1

γ(1 + γ)

9
∑

j=1

(

pj

[(

pj

qj

)γ

− 1

])

, (2.2)

where γ is an arbitrary unspecified parameter.

In the context of recovering the unknown FSD distribution, use of the CR criterion (2.2)

suggests we seek, given q, a solution to the following extremum problem:

p̂ = arg min
p

[

I(p,q, γ)

∣

∣

∣

∣

9
∑

j=1

pjdj = d̄,

9
∑

j=1

pj = 1, pj ≥ 0

]

. (2.3)

In the limit, as γ varies, a family of distance measures evolves. The variants γ = −1 and γ = 0

of I(p,q, γ) have received explicit attention in the literature (see Mittelhammer et al. (2000)).

Assuming for expository purposes that the reference distribution is discrete uniform, i.e. for

all j, qj = 1/9, then I(p,q, γ) converges to an estimation criterion equivalent to Owen’s

(2001) empirical likelihood (EL) criterion
∑

9

j=1
ln(pj), when γ → −1. The EL criterion

assigns discrete mass across the nine possible FSD outcomes. In the sense of objective

function analogies, the Owen EL is closest to the classical maximum-likelihood approach and

in fact results in a maximum non-parametric likelihood alternative. Another prominent case

for the CR statistic corresponds to letting γ → 0 and leads to the criterion −
∑

9

j=1
pj ln(pj),

which is the maximum entropy (ME) function (Shannon 1948, Jaynes 1957a,b). Inserting the

γ = 0 criterion in (2.3) leads to a maximum entropy formulation for the problem. Solutions

for these distance measures cannot be written in a closed form and require a computer

optimization algorithm.
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3 Empirical Likelihood (EL) Formulation and Appli-

cation

Given the two information-theoretic variants of the CR I(p,q, γ) discrepancy-distance mea-

sures prominent in the literature, we demonstrate, in the case of the CR-EL criterion,

γ → −1, a uniform reference distribution q (for all j, qj = 1/9), and first-moment informa-

tion, a basis for recovering discrete FSD probability distributions such that the probabilities

p > 0 and
∑

j pj = 1. Under this specification, when γ → −1, the CR I(p,q, γ) con-

verges to an estimation criterion equivalent to Owen’s (2001) empirical likelihood metric

9−1
∑

9

j=1
ln(pj). Our extremum problem likelihood function can then be formulated as

max
p

[

9−1

9
∑

j=1

ln pj

∣

∣

∣

∣

9
∑

j=1

pjdj = d̄,

9
∑

j=1

pj = 1

]

. (3.1)

The corresponding Lagrange function is

L(p, η, λ) ≡ 9−1

9
∑

j=1

ln pj − η

(

9
∑

j=1

pj − 1

)

− λ

(

9
∑

j=1

pjdj − d̄

)

(3.2)

where p > 0 is implicit in the structure of the problem. Solving the corresponding first order

condition with respect to pj leads to the solution

p̂j(d̄, λ̂) = 9−1

(

1 + λ̂
(

dj − d̄
)

)

−1

(3.3)

for the jth outcome where λ̂ is such that p̂B(d, λ̂) satisfies the mean constraint (2.1). This

solution implies that, as the mean of the FSD varies over a range of actual data sets, an

exponential family of distributions will result. In equation (4.2), p̂j is a function of λ̂, the

Lagrange multiplier for constraint (2.1) and the information used as a basis for modifying the

distribution of FSD probabilities. The CR-EL criterion, also specified as
∏

9

j=1
pj , provides
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an empirical representation of the joint PDF of independent random variables. Maximizing
∏

9

j=1
pj , subject to the moment condition and the adding up restriction, the pj are chosen

to assign the maximum joint probability among all of the possible probability assignments.

3.1 Some Mean-Related EL Distributions

Given information about FSD means of data sets and the CR-EL formulation (3.1)-(4.2),

some corresponding FSD distributions are presented in Appendix Table A-3 and illustrated

in Figure 1. As expected, uniform p̂j result when a uniform reference distribution and a

FSD mean of 5 are used in (3.1). For mean FSD values less than 5, the resulting estimated

FSD distribution is tilted toward the lower digits and reflects the monotonic decreasing

FSD probabilities exhibited by the Benford distribution. For FSD means between 3 and

4, the correlation between Benford and the EL FSD proportions are high, approaching 1

as the FSD mean approaches the Benford mean of 3.44. For this FSD mean, the EL and

FSD proportions are approximately equivalent. Because many empirical data sets have FSD

means between 3 and 4, this explains why many seemingly unrelated data sets have been

associated with Benford-like FSD distributions.2 Note, however, in the rare event of an FSD

mean greater than 5.0, the distribution is increasing (see Table A-3).

In this data-adaptive context, as a data set’s FSD mean changes, alternative null hy-

potheses regarding the digit proportions are suggested. Thus, a basis is provided for realizing

an exponential family of FSD distributions and relating it to a particular underlying data

set. Consequently, data-based Benford-like alternative null hypotheses result and present an

alternative basis for testing for human influence and/or errors of measurement in data sets.

2Another explanation would be that these data sets involve products of independent observations.
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Figure 1: Empirical Likelihood (EL) Distribution (with uniform reference distribution)

4 Illustrations of EL Estimator’s Performance

4.1 The Rodriguez Data

As one basis to illustrate the performance of the EL estimator in recovering FSD data-based

distributions, we make use of data analyzed by Ley (1996) and Rodriguez (2004). These

data on sales, total assets, net income, and stock prices are from the Disclosure Global

Researcher SEC database. Ley (1996) originally analyzed DJ Returns 1, 2, and 3 which

consist of the daily rates of return of the Dow Jones Industrial Average when their absolute

values are below .1, greater than or equal to .1 but less than 1, and greater than or equal to

1 respectively. Rodriguez (2004) analyzed these variables as well as the daily closing values

of the Dow Jones Industrial Average (DJ Value) which he took from the internet, recording

all index values lower than 10,000 from January 2, 1930 to December 29, 2000. We analyze
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this data since it has already been analyzed in the context of Benford’s law in two important

papers, is related to an interesting data set for economists, and involves FSD first moments

that vary over a wide range, thus illustrating the reach of the EL criterion.

In Appendix A the frequencies for the actual data are presented in Table A-1 and the

corresponding EL FSD frequencies are presented in Table A-2. Note the FSD means for these

data range from 1.389 to 5.034 and three of the data sets have FSD means virtually equivalent

to the Benford mean of 3.44. Consequently, these three data sets have an almost perfect

correlation with the Benford and resulting EL distributions. Correlations and goodness-of-fit

tests between the EL, Benford, and actual distributions are presented in Table 1.

The χ2 goodness-of-fit test is the test most commonly used when comparing actual data

with Benford’s law. The χ2 test has high power for large samples so even quite small devi-

ations from Benford’s law will be statistically significant. Giles (2006) has suggested using

Kuiper’s modified Kolmogorov-Smirnov goodness-of-fit test (VN) instead. This test is less

sensitive to sample size and also recognizes circularity of data. Critical values for a modi-

fied Kuiper test (V ∗

N) have been given by Stephens (1970). Both the original and modified

Kuiper tests were designed for use with continuous distributions, so the critical values given

by Stephens (1970) are not accurate in the case of the discrete Benford distributions. Monte

Carlo exercises suggest a 5% critical value of 1.34 for the Benford distribution (rather than

1.75 in the continuous case). Morrow (2006) shows that there are general properties un-

der which we should expect both Benford’s law and scale invariance to hold, however he

also shows that the suitability of tests found in the literature is dependent on underlying

distributional assumptions.

The Rodriguez data sets involving sales, total assets, and net income have FSD means

consistent with the Benford mean. Therefore, in terms of goodness-of-fit with the actual

data, both Benford and EL perform well. On the other hand, the DJ1 data has a mean of

5.03 and thus exhibits a non-decreasing monotonic FSD property more compatible with the
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Table 1: Correlations (r), χ2 Tests, and Kuiper V ∗

N Tests, between the Empirical Distribution
from the Rodriguez (2004) Data Sets and both the EL Estimated Distribution (with a
uniform reference distribution) and Benford’s Distribution

EL-Emp Ben-Emp
Variable Obs Mean r χ2 V ∗

N r χ2 V ∗

N

DJ Return 1 6162 5.03 0.21 21.4 1.44 -0.48 2605.8 21.33
DJ Return 2 22598 3.61 0.97 304.9 8.26 0.96 612.1 11.21
DJ Return 3 5044 1.39 0.99 1216.2 8.42 0.94 5676.3 33.62
DJ Value 18392 4.17 0.65 5799.3 34.25 0.81 6320.8 25.79
Sales 11566 3.45 1.00 74.3 3.73 1.00 9.3 1.08
Total Assets 11565 3.44 1.00 5.2 0.55 1.00 5.1 0.58
Net Income 11566 3.44 1.00 12.3 0.76 1.00 12.2 0.79
Stock Prices 8584 3.26 0.99 67.2 3.69 1.00 72.3 3.53

The 10%, 5%, and 1% critical values for χ2 with 8 degrees of freedom are 13.36, 15.51, and 20.09, and for
V ∗

N
they are approximately 1.21, 1.34, and 1.61.

EL estimated distribution. This is likely the reason that the correlation between the empir-

ical distribution and Benford’s law is negative, while the correlation between the empirical

distribution and the estimated EL distribution is positive. The DJ3 data set has an FSD

mean of 1.39 and thus a highly tilted empirical distribution much different from Benford but

consistent with the estimated EL distribution. The DJ Value data set has a mean of 4.17

and is close to the uniform and EL distributions. Generally, although Benford’s distribution

tends to be more highly correlated with the empirical data, the EL distribution yields supe-

rior goodness-of-fit for data sets with FSD means further from 3.44. For the Rodriguez data

sets with FSD means close to 3.44, Benford and EL both appear to provide decent goodness-

of-fit. Thus, the FSD sample mean appears to be a good predictor of goodness-of-fit with

Benford and the resulting EL FSD distribution.

4.2 The Paraguay Data

We also use survey data from households in rural Paraguay to examine whether the information-

theoretic EL methods can be used with survey data to assess its agreement or disagreement
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with Benford’s law. Correlation and goodness-of-fit tests are used to check the agreement,

or disagreement, among the EL, Benford, and empirical distributions and the results are

presented in Table 2. The self-reported survey data from rural Paraguayans exhibits a large

number of outcomes with an FSD of 5, perhaps due to guesses by the respondents. A similar

phenomenon is found by de Marchi & Hamilton (2006), who used Benford’s law to test for

tampering in self-reported toxic emissions by chemical plants.

In general, both Benford and EL do a good job of tracking the observed proportions.

Again, the empirical data is more highly correlated with Benford than it is with the EL

estimated distribution. The three variables for which the EL FSD distribution appears

superior as seen in Table 2, with better goodness-of-fit according to both the χ2 and V ∗

N

tests, are income, land owned, and the performance of the third enumerator in 2002. In

previous work, we considered the fact that data on church donations do not conform with

Benford’s law to be suggestive evidence that people may not be reporting their donations

correctly (Judge & Schechter 2006). This variable continues to perform poorly under the

data-based EL. Again, departures of data sets’ FSD means from 3.44 appear to be good

predictors of relative goodness-of-fit with the Benford and EL FSD distributions.

4.3 Estimator Performance under a Non-uniform Reference Dis-

tribution

Thus far we have analyzed the CR distance measures using the assumption of a uniform

reference distribution. We have noted the general monotonic decreasing nature of FSD dis-

tributions. We have also shown that the Benford FSD distribution offers good performance

over a large number of data sets, as well as good performance relative to conventional EL.

This suggests that there are data sets that induce the empirical Benford distribution. Con-

sequently, it would seem that the Benford distribution is a natural choice as a reference
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Table 2: Correlations (r), χ2 Tests, and Kuiper V ∗

N Tests, between the Empirical Distribu-
tion from the Paraguay Data Set and both the EL Estimated Distribution (with a uniform
reference distribution) and Benford’s Distribution

EL-Emp Ben-Emp
Variable Obs Mean r χ2 V ∗

N r χ2 V ∗

N

Income 222 3.62 0.95 9.05 0.90 0.95 10.55 1.23
All Products 1632 3.16 0.96 115.25 3.17 0.97 101.34 2.69
Land Owned 223 3.61 0.98 7.19 0.64 0.98 8.49 0.72
Donations 197 2.94 0.88 49.47 2.28 0.92 38.93 1.64
Enu1 in 2002 177 3.45 0.98 4.37 0.74 0.98 4.23 0.72
Enu2 in 2002 184 3.37 0.96 10.75 0.72 0.96 10.38 0.64
Enu3 in 2002 198 3.24 0.98 4.76 0.43 0.98 5.96 0.83
Enu1 in 1999 85 2.93 0.83 26.89 1.68 0.87 21.95 1.20
Enu2 in 1999 94 2.79 0.81 30.83 1.88 0.96 7.86 1.20

The 10%, 5%, and 1% critical values for χ2 with 8 degrees of freedom are 13.36, 15.51, and 20.09, and for
V ∗

N
they are approximately 1.21, 1.34, and 1.61.

distribution (qB) in the CR-EL context. We pursue this idea in the next subsections.

4.3.1 EL Formulation with Benford Reference

To acknowledge the decreasing monotonic nature of FSD’s, instead of a uniform distribution

we now make use of the Benford distribution, qB, as the reference distribution in (2.2).

Thus, in the Cressie-Read formulation (2.2), γ = −1 and Benford probabilities qB replace

the uniform reference distribution of Section 3. This leads to the BEL, or Benford Empirical

Likelihood, criterion

lim
γ→−1

I(p,qB, γ) =
9
∑

j=1

qjB ln(pj/qjB) =
9
∑

j=1

qjB ln(pj) −
9
∑

j=1

qjB ln(qjB) (4.1)

where
∑

9

j=1
qjB ln qjB is an added constant. Using this revised criterion and the data con-

straint (2.1), the adding-up condition, and selected FSD means over the range 2.0-5.5, results

in

ˆpjB(d̄, λ̂) = qjB

(

1 + λ̂
(

dj − d̄
)

)

−1

for j = 1, ..., 9 (4.2)
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where λ̂ is such that p̂B(d, λ̂) satisfies the mean constraint (2.1).

The BEL recovered FSD distributions, p̂B, for the range of mean values 2.0–5.5 are

presented in Table A-4. To see the impact of using a Benford reference distribution and

a BEL criterion function, compare the estimates in Table A-4 with the conventional EL

estimates in Table A-3. For clarity, Table A-5 shows the difference between the El and

the BEL estimates. One interesting fact is that the Benford distribution and the BEL

distribution are absolutely identical when the FSD mean is 3.44. In this case the Benford

reference distribution is the minimum distance solution since it satisfies the constraints.

With FSD means above 3.44, the BEL estimates tend to put higher probabilities on both

higher and lower digits than do the EL estimates, which put higher probability on digits

in the middle. For FSD means below 3.44, the El puts higher probability on a first digit

of 1, whereas BEL puts higher probability on low digits greater than 1. Note also that

the correlation between the EL estimates and Benford’s distribution for sample FSD means

between 3 and 4 is quite high.

Comparisons of the BEL distributions to the Rodriguez and Paraguay data sets suggest

that the BEL distributions almost always lead to a closer fit with the respective empirical

distributions than does Benford’s distribution.3 The list of variables for which we could not

reject that the data were naturally occurring hardly changes when using the BEL rather

than the Benford and conventional EL distributions. On the other hand, the use of BEL

does not allow us to fail to reject that many more of the data sets are naturally occurring

and free of human influence.

One of the referees raised the possibility that, in the event that the value of d̄ for DJ in

2004 were available, one could use the corresponding EL-estimated FSD distribution as the

reference distribution for DJ in 2005. This data-based reference distribution may, in many

situations, be superior to both the fixed uniform and Benford distributions.

3These results are omitted to save space but are available from the authors upon request.
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5 Summary and Implications

Benford’s law and the corresponding logarithmic FSD distribution appear to capture the

weakly monotonic nature of a range of data sets. Recognizing that the Benford FSD distri-

bution does not hold in general for scale invariant distributions, we have suggested a family of

data-based Benford-like distributions that are based on information-theoretic methods and

a first moment of an FSD data distribution. This resulting family of distributions exhibits

weakly monotonic Benford-like FSD probabilities and yields exponential distributions that

may serve as null hypotheses when confronting empirical FSD proportions.

If a “natural” FSD distribution is to be used as a reference distribution to evaluate

the impact of human influence or tampering on real data sets, it seems important that the

reference distribution incorporate the characteristics defining that data set. Based on an

empirical likelihood distance measure, a range of information-theoretic FSD distributions

having different FSD means were analyzed and compared to Benford’s FSD distribution

under the assumptions of both uniform and Benford reference distributions. Two data sets

were used to illustrate the reach of these data-based FSD methods. In both cases the

information-theoretic FSD distributions performed well in assessing agreement or disagree-

ment with Benford’s law. Why some sequences of positive real numbers naturally exhibit

the scale invariance multiplicative property is a question we, and many others, continue to

ponder.
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A Appendix: Extra Tables

Table A-1: Empirical Rodriguez Data Sets (Table 3 in Rodriguez (2004))

Data Set p1 p2 p3 p4 p5 p6 p7 p8 p9

DJ Return 1 (6,162) 0.101 0.110 0.121 0.103 0.116 0.119 0.116 0.107 0.109
DJ Return 2 (22,598) 0.233 0.189 0.143 0.117 0.093 0.075 0.060 0.050 0.041
DJ Return 3 (5,044) 0.773 0.145 0.040 0.021 0.011 0.005 0.002 0.002 0.001
DJ Value (18,392) 0.327 0.140 0.059 0.053 0.042 0.061 0.064 0.140 0.115
Sales (11,566) 0.306 0.174 0.121 0.097 0.077 0.065 0.058 0.052 0.051
Total Assets (11,565) 0.301 0.177 0.121 0.099 0.083 0.065 0.057 0.051 0.047
Net Income (11,566) 0.301 0.176 0.123 0.099 0.085 0.061 0.059 0.051 0.046
Stock Prices (8,584) 0.306 0.197 0.137 0.093 0.076 0.059 0.051 0.041 0.040
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Table A-2: Estimated Empirical Likelihood (EL) Distributions (with uniform reference distribution) for the Rodriguez
(2004) Data

Data Set # of Obs FSD Mean p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8 p̂9

DJ Return 1 6,162 5.0336 0.109 0.109 0.110 0.111 0.111 0.112 0.112 0.113 0.113
DJ Return 2 22,598 3.6055 0.270 0.174 0.129 0.102 0.085 0.072 0.063 0.056 0.050
DJ Return 3 5,044 1.3898 0.869 0.047 0.024 0.016 0.012 0.010 0.008 0.007 0.006
DJ Value 18,392 4.1734 0.186 0.154 0.131 0.114 0.101 0.090 0.082 0.075 0.069
Sales 11,566 3.4523 0.298 0.177 0.126 0.097 0.080 0.067 0.058 0.051 0.046
Total Assets 11,565 3.4416 0.300 0.177 0.125 0.097 0.079 0.067 0.058 0.051 0.046
Net Income 11,566 3.4409 0.300 0.177 0.125 0.097 0.079 0.067 0.058 0.051 0.046
Stock Prices 8,584 3.2632 0.336 0.177 0.120 0.091 0.073 0.061 0.053 0.046 0.041
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Table A-3: Estimated Empirical Likelihood (EL) Distributions (with uniform reference distribution) for the FSD Problem
and their Correlation (r) with Benford’s Distribution

FSD Mean p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8 p̂9 r
2.0 0.673 0.111 0.061 0.042 0.032 0.026 0.021 0.018 0.016 0.925
3.0 0.395 0.173 0.111 0.082 0.065 0.053 0.046 0.040 0.035 0.990
3.44 0.300 0.177 0.125 0.097 0.079 0.067 0.058 0.051 0.046 1.000
4.0 0.208 0.161 0.132 0.111 0.096 0.085 0.076 0.068 0.062 0.980
4.5 0.151 0.137 0.125 0.115 0.107 0.100 0.093 0.088 0.083 0.932
5.0 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.000
5.5 0.083 0.088 0.093 0.100 0.107 0.115 0.125 0.137 0.151 -0.782

Table A-4: Estimated Empirical Likelihood (BEL) Distributions (with a Benford FSD reference distribution) for the FSD
Problem and their Correlation (r) with Benford’s Distribution

FSD Mean p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8 p̂9 r
2.0 0.598 0.176 0.083 0.049 0.032 0.022 0.017 0.013 0.010 0.967
3.0 0.363 0.193 0.125 0.089 0.068 0.053 0.043 0.036 0.030 1.000
3.44 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 1.000
4.0 0.243 0.152 0.116 0.097 0.086 0.080 0.076 0.075 0.076 1.000
4.5 0.205 0.132 0.104 0.091 0.085 0.084 0.087 0.097 0.116 0.912
5.0 0.173 0.114 0.091 0.082 0.079 0.082 0.092 0.114 0.173 0.457
5.5 0.147 0.097 0.079 0.072 0.071 0.076 0.089 0.122 0.247 0.013
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Table A-5: Difference Between the Estimated Empirical Likelihood EL (with a uniform FSD reference distribution) and
BEL (with a Benford FSD reference distribution) Distributions for the FSD Problem

FSD Mean p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8 p̂9

2.0 0.075 -0.065 -0.022 -0.007 0.000 0.004 0.004 0.005 0.006
3.0 0.032 -0.020 -0.014 -0.007 -0.003 0.000 0.003 0.004 0.005
3.44 -0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4.0 -0.035 0.009 0.016 0.014 0.010 0.005 0.000 -0.007 -0.014
4.5 -0.054 0.005 0.021 0.024 0.022 0.016 0.006 -0.009 -0.033
5.0 -0.062 -0.003 0.020 0.029 0.032 0.029 0.019 -0.003 -0.062
5.5 -0.064 -0.009 0.014 0.028 0.036 0.039 0.036 0.015 -0.096
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