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Abstract

I look at data from an experiment in which people rank apples ac-
cording to how they think they will taste. They are then blindfolded
and rank how they actually taste. I estimate a multinomial rank-
ordered probit model with correlated errors between the taste and
visual rankings. I find that the errors for visual characteristics are
correlated based on coloring, while the errors for taste are correlated
based on sweetness and tartness. Allowing for correlation between the
errors in the two regressions shows that, although people often mis-
perceive apple taste based upon visual cues, they do so in systematic
ways. People who prefer the looks of an apple they think to be tart
(Granny Smith), will like the taste of other apples which are also tart
but less well-known (Jonagold).

1 Introduction

Few people have the ability to choose a good apple from the many varieties
and sizes available at supermarkets today. Often, a consumer will pick the

∗I am indebted to Ethan Ligon for collecting the data and allowing me to use it and
to Ken Train for his invaluable advice and help. I appreciate comments from Jennifer
Alix-Garcia, Yanhong Jin, and Guanming Shi. Alex Yuskavage provided able research
assistance.
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Table 1: Shares of Rankings, n = 135

Visual Taste

1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th

Granny Smith 0.24 0.24 0.19 0.27 0.07 0.27 0.15 0.27 0.16 0.16
Fuji 0.16 0.19 0.31 0.23 0.12 0.30 0.24 0.15 0.19 0.13
Golden Del. 0.10 0.27 0.27 0.22 0.14 0.08 0.19 0.17 0.25 0.31
Jonagold 0.43 0.20 0.17 0.12 0.08 0.16 0.24 0.23 0.21 0.15
Red Del. 0.07 0.10 0.07 0.17 0.59 0.19 0.19 0.18 0.19 0.25

prettiest, most colorful, unblemished apple in the hope that the apple will
taste good as well. In this paper I look at rankings of 5 different varieties
of apple. The data comes from an experiment carried out on Cal Day1 in
1999. Participants were shown the apples and asked to rank them in the
order of how good they thought they would taste. Then, the participants
were blindfolded and ate a piece of each apple and ranked them again in the
order of how good they actually tasted. Throughout this paper I will label
these ‘visual’ and ‘taste’ rankings, although what I call a ‘visual’ ranking is
actually a visual assessment of how good the respondent thinks the apple
will taste; it is not an assessment of the apple’s visual characteristics.

Although data on willingness-to-pay are not available, McCluskey et al.
(2007) show that subjective evaluation by consumers of apple quality based
on taste has higher predictive power for willingness to pay than do objective
tests of apple quality such as firmness or soluble solids. Thus, subjective
evaluations of apples do contain economic content. The reader should keep
in mind that this is a ‘simplified’ experiment in that it does not re-create a
real market setting. For example, visual and taste perceptions may interact
with price information or knowledge of apple varietals in unknown ways which
we can not capture with our data. Future experiments using the statistical
methodology laid out in this paper could use a more realistic experimental
set-up.

135 participants tasted Granny Smith, Golden Delicious, Jonagold, Fuji,
and Red Delicious apples (although they did not actually know what variety

1Cal Day is a day for friends, alumni, parents, and students at UC Berkeley to enjoy
demonstrations, lectures, and other activities.
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Table 2: Typical apple characteristics

Variety Color Taste Introduced

Granny Smith Bright green Very tart and crisp 1850
Fuji Red with yellow and green highlights Very sweet and crisp 1962
Golden Del. Golden yellow Mildly sweet and creamy 1900
Jonagold Yellow with orange and red highlights Sweet-tart and crisp 1968
Red Del. Bright red Very sweet and crisp 1872

each apple was). The shares of people ranking each apple first through
fifth in terms of visual and taste preference are presented in Table 1. Some
typical characteristics of apples of each variety are presented in Table 2. One
sees that people have an aversion to the looks of the Red Delicious apple.
This aversion may be caused by Red Delicious apples’ reputation for having
little taste. On the other hand, people are not so averse to the taste of
the Red Delicious apple, suggesting that the apple’s bad reputation may
be partially unfounded. Conversely, the participants liked the look of the
Jonagold apple, but were less impressed by the Jonagold’s taste. The Fuji
tasted better than expected. It is reasonable to expect that people are not
able to distinguish by sight which apple will taste the best between apples
of the same variety, but here one finds that people can not discern which
apple they will like best, even among apples of distinct varieties. Allowing
for correlations between unobserved characteristics in the taste and visual
rankings will make it possible to find patterns in this mis-ranking.

Other papers which compare taste and visual evaluations include Melton
et al. (1996) and Nalley et al. (2006) who conduct auctions on pork chops
and sweet potatoes respectively and find little consistency in bids between
the pre-tasting and post-tasting bids. Bredahl et al. (1998) and Banović et al.
(2009) find that assessments of beef before and after consumption diverge.2

Opposing evidence is found by Bello Acebrón and Calvo Dopico (2000) and
Bredahl (2004) who find that assessments of pork and beef before and after
consumption are largely in accord with one another. The last two differ from
the others in that they are ex-post assessments of meats which the consumer
himself chose to purchase rather than items chosen by the experimenter.

2Poole et al. (2007) find that bids in auctions for oranges change after first seeing the
oranges whole, then peeling them, and again after tasting them.
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Ranked data contains much more information than do surveys which
ask for only the preferred alternative. Thus ranked data surveys are ex-
tremely cost-effective since fewer observations are necessary for a given level
of precision. On the other hand, some economists have pointed out that
top ranked choices may be ranked with more precision than bottom ranked
choices (Hausman and Ruud, 1987; Ben-Akiva et al., 1992). Consumers are
daily confronted with situations in which they choose their first choice, but
are not often asked to rank the remaining alternatives, possibly resulting in
decreasing precision of ranked choices.

Carson et al. (1994) discuss fatigue effects (boredom with the choice tasks)
as well as the use of hypothetical experimental choice sets as causes of de-
creasing precision in ranks. Because our data are on taste and visual rankings
of real apples, which the subject can see and enjoy tasting, (as opposed to
varying hypothetical mobile phone attributes) these issues should be attenu-
ated here. In addition, although, from a theoretical perspective, the number
of choices presented to respondents should not affect the reliability of the
data; in practice, too many choices may add to respondent fatigue and make
the ranking exercise more difficult as the options become more similar. The
literature does not tell us how the number of choices affects the reliability of
ranked data, but a choice between five apples is not excessive compared to
other experiments using ranked data. Recent evidence from Caparrós et al.
(2008) suggests that ranking experiments which only use data regarding the
favorite choice and preferred choice experiments give similar outcomes, and
that the divergence found in previous studies is largely due to differences in
experimental design rather than the participants’ cognitive processes.

This paper uses rank-ordered probit to analyze ranked data while most
previous papers have used a rank-ordered logit model (Beggs et al., 1981;
Ben-Akiva et al., 1992; Bradlow and Fader, 2001; Hausman and Ruud, 1987).
These papers look at rankings of transportation, car phones, and even the
Billboard top 100 list. The logit specification exhibits the Independence
from Irrelevant Alternatives (IIA) assumption. The IIA assumption makes
evaluating a rank-ordered logit model quite simple. One can “explode” each
individual’s ranking into a series of independent choice situations. First the
individual picks his first choice. Then, with that alternative eliminated, the
participant picks his second choice, given the remaining alternatives. In this
way ranked data can be decomposed into a series of statistically independent
choices.

IIA is a very convenient property, but the maintained assumption of IIA
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may be quite restrictive. IIA implies that the ratio of the probabilities of any
two alternatives is constant, no matter what other alternatives are presented
to the individual. The rank-ordered probit model, on the other hand, allows
each alternative to have a random component with a complete variance-
covariance structure.

More importantly, rankings from best to worst are not compatible with
ranking from worst to best under the multinomial logit specification. Luce
and Suppes (1965) call this the “impossibility theorem” (Theorem 51 on page
357). For an individual’s ranking from best to worst to be compatible with
the individual’s ranking from worst to best, the probability of each alternative
must be 1

N
(where N is the number of alternatives). The IIA property

of rank-ordered logit is the critical piece which causes this incompatibility.
Rank-ordered probit does not suffer from Luce and Suppes’ impossibility
theorem. Thus, if one thinks that people may not necessarily think through
their decisions from best to worst,3 then the rank-ordered probit specification
is preferable to that of rank-ordered logit.

Yao and Böckenholt (1999) use Gibbs sampling in a Bayesian framework
to estimate a rank-ordered probit model. Chan and Bentler (1998) estimate
a rank-ordered probit model with a full variance/covariance matrix using
GLS and partition maximum likelihood. GLS and partition maximum likeli-
hood are limited information estimators and are consistent, but not efficient.
Maximum likelihood is a full information procedure, and maximum simu-
lated likelihood is efficient when the number of draws rises faster than the
square root of the number of observations (i.e. respondents) (Hajivassiliou
and Ruud, 1994). Hajivassiliou and Ruud (1994) use maximum likelihood to
estimate a rank-ordered probit model with a complete variance/covariance
matrix with Monte Carlo data as an example. Riddel and Schwer (2006)
is the only paper thusfar to estimate a rank-ordered probit using maximum
likelihood with real data.4

The contribution of the current paper is that I estimate a rank-ordered
probit model using maximum likelihood over multiple characteristics of ap-
ples with errors correlated between the two regressions. By using rank-
ordered probit, I can efficiently relax the IID assumption which has hampered
previous work using ranked data on both single and multiple characteristics.

3Perhaps they choose their most and least favorite alternatives first, and then figure
out the rankings in between.

4The authors do not directly state that they use maximum likelihood, but one can infer
that they probably do.
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In addition, I show how one can allow the errors between the multiple rank-
ings (in this case, taste and visual) to be correlated with one another in the
rank-ordered probit framework. This technique could also be useful when
combining stated and revealed preference. Ben-Akiva and Morikawa (1990)
and Adamowicz et al. (1994) carry out a logit model which maintains the
IID assumption within the revealed preference grouping and within the stated
preference grouping, but allows for a correlation between the two.

Allowing a correlation between taste and visual rankings tells us, in this
case, that people who like the taste of the Jonagold (a newer and possibly less
well-known tart apple) often incorrectly think they will prefer the Granny
Smith apple when they rank the apples visually. On the other hand, people
who prefer the Jonagold visually are often mistaken, preferring the taste
of the sweeter apples and perhaps not realizing by look that the Jonagold
is a tart apple.5 This means that, although people mistakenly think when
looking at apples that they will prefer the taste of apples they don’t actually
prefer, there is a systematic basis to these errors. This type of analysis can
be applied to combine any data with rankings over multiple attributes of the
same good or to combine stated and revealed preference, in order to design
products with characteristic sets well-attuned to the desires of specific sectors
of the consumer population.

The rest of this paper is organized as follows: Section 2 presents the choice
model and simulation methods used in the analysis, Section 3 presents the
results assuming no correlation between the taste and visual rankings while
Section 4 presents the results allowing correlation between errors in the taste
and visual regressions. Section 5 gives some concluding remarks.

2 Econometric Model

The probit model specifies utility with an observed and an unobserved com-
ponent. Let the utility that individual i receives from alternative n be de-
noted as

Uin = Vin + ein

5This finding is similar to that of Thybo et al. (2004) who find that children who claim
to prefer green apples do actually prefer them in taste tests, while children who claim to
prefer red apples do as well. The red apple in their experiment is sweet while the green
apple is tart, which implies that children are at least able to predict whether they will like
tart or sweet apples.
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where V is the observed portion and e the unobserved portion of utility. The
vector ẽn = {ein}n of error terms is normally distributed with a mean of 0
and variance-covariance matrix Ω. In cases in which there is only information
on the individual’s preferred alternative, one calculates the probability that
the utility associated with the chosen alternative is higher than the utility
associated with all other alternatives. If there are J alternatives, there will
be J − 1 non-redundant inequalities. One would then calculate their joint
probability.

Pin = Prob(Vin + ein > Vij + eij) ∀j ∈ J, j ∕= n

In the rank-ordered case, one only has to consider the J−1 non-redundant
inequalities for each individual inspired by their ranking. For example, if
there are 5 choices which the individual ranks in the order 3, 2, 1, 4, 5, there
will be 4 inequalities.

Pin = Prob( Vi3 + ei3 > Vi2 + ei2

& Vi2 + ei2 > Vi1 + ei1

& Vi1 + ei1 > Vi4 + ei4)

& Vi4 + ei4 > Vi5 + ei5)

This likelihood function can be written more formally as

Pin =
∫ ∞

ei3=Vi2+ei2−Vi3

∫ ei3

ei2=Vi1+ei1−Vi2

∫ ei2

ei1=Vi4+ei4−Vi1

∫ ei1

ei4=Vi5+ei5−Vi4

Á(ẽin)dei4dei1dei2dei3

where Á(ẽin) is the joint normal density function.
Using maximum likelihood estimation, I maximize the sum over individ-

uals of the logs of each likelihood function to find the parameters of the
model. Because calculating the closed form value of this integral directly
is not possible, I approximate the integral with simulations. Hajivassiliou
et al. (1996) conducted a survey of 11 different Monte Carlo techniques
used for simulation of the multinomial probit likelihood. They find that
the Geweke-Hajivassiliou-Keane (GHK) simulator is the most reliable of all
the simulators, especially for simulating probabilities. The GHK simulator
takes samples from recursive truncated normals after a Choleski transforma-
tion. Let U , V , and e be column vectors of Uin, Vin, and ein respectively
Then the utility functions can be expressed as U = V + e.
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In implementing the GHK simulator with rank-ordered data, one pre-
multiplies the U and V , matrices by a transformation matrix M and trans-
forms Ω by MΩM ′. This matrix allows one to translate the original model
to the model with only J − 1 equations. The first row of this matrix will
contain all 0’s except for a -1 in the column of the individual’s first choice
and a 1 in the column of his second choice. The second row will have a -1
in the column of the individual’s second choice and a 1 in the column of his
third choice. For example, with our previous ranking (3,2,1,4,5), one would
use the following transformation matrix.

0 1 -1 0 0
Mr = 1 -1 0 0 0

-1 0 0 1 0
0 0 0 -1 1

After transforming the utility functions to utility differences one has
MrU = MrV + Mre, where Mr represents the transformation matrix when
ranking order r is chosen. Let Cr be the Choleski factor of MrΩM

′
r. Then

the utility differences can be rewritten as MrU = MrV + Cr´ (where ´ is
a vector of standard normal deviates). The GHK simulator will randomly
choose a value for ´i1 for individual i and alternative 1, which satisfies the
first inequality. Then, given that value of ´i1, the simulator will randomly
choose a value of ´i2 which satisfies the second inequality and so on.

The simulation process can often be very slow because a large number of
random draws is needed for precision in estimation. Random draws are not
as efficient as some types of ‘intelligent’ draws. Quasi-random (‘intelligent’)
draws exhibit more uniform coverage of the space over which one randomizes.
Train (2000) and Bhat (2001) have researched the use of draws from Halton
sequences in simulation procedures. They have found that simulation vari-
ance is lower with only 100 quasi-random Halton draws than it is with 1000
more traditional random draws and so in this paper I also use 100 Halton
draws.

3 Results - Uncorrelated Errors between Taste

and Visual Regressions

To analyze the visual and taste rankings over apples I first use a rank-ordered
multinomial probit model with uncorrelated errors between the two sets of
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rankings. I compute the probability integral using a GHK simulator with
100 Halton quasi-random draws. I use four alternative specific constants and
normalize the coefficient on Granny Smith to 0.6

Table 3: General variance/covariance matrix
0.000 0.000 0.000 0.000 0.000
0.000 1.000 s11+s23−s13−s12

s11+s22−2s12
s11+s24−s14−s12
s11+s22−2s12

s11+s25−s15−s12
s11+s22−2s12

0.000 s11+s23−s13−s12
s11+s22−2s12

s11+s33−2s13
s11+s22−2s12

s11+s34−s14−s13
s11+s22−2s12

s11+s35−s15−s13
s11+s22−2s12

0.000 s11+s24−s14−s12
s11+s22−2s12

s11+s43−s14−s13
s11+s22−2s12

s11+s44−2s14
s11+s22−2s12

s11+s45−s15−s14
s11+s22−2s12

0.000 s11+s25−s15−s12
s11+s22−2s12

s11+s53−s15−s13
s11+s22−2s12

s11+s54−s14−s15
s11+s22−2s12

s11+s55−2s15
s11+s22−2s12

Interpreting the variance-covariance matrices for the error terms is quite
difficult. In order for the model to be identified, one must normalize the first
row and column to contain only zeros, and the entry in the second row and
second column to be 1. Define sij to be the correlation between the unob-
served characteristics of the itℎ and jtℎ apples. Table 3 presents the formula
for the entries in the variance-covariance matrix after normalization. Note
that in the case of homoskedasticity and zero correlation between apples, the
matrix would have 1’s on the diagonal and .5’s in all of the other positions
(except for the first row and column of 0’s).7

Table 4 reports the estimates of the normalized alternative-specific con-
stants using Granny Smith as a base.8 Although the Red Delicious apple
has a significant negative coefficient in the visual regression, its coefficient
is almost 0 in the taste regression. Many people may have had such bad
experiences with Red Delicious apples that they no longer think that a Red
Delicious would taste good when they see it and so predict it will yield them
lower utility than Granny Smith. The Jonagold looks the best to everyone,
although people don’t seem to be especially keen on its taste. The Fuji apple

6Note that the normalization of an alternative-specific constant to 0 is common in
all discrete choice analysis and is true of estimation techniques that both do and do not
assume IIA.

7If there is no correlation between apples then s12 = s13 = s14 = s15 = s23 = s24 =
s25 = s34 = s35 = 0 and if there is homoskedasticity then s11 = s22 = s33 = s44 = s55. So,
for example, the entry in the third row and second column of table 3 is s11+s23−s13−s12

s11+s22−2s12
.

If there is no correlation between apples this simplifies to s11
s11+s22

and if there is also

homoskedasticity this further simplifies to 1
2 .

8In this case, results using multinomial logit give quite similar coefficients. Thus, the
“impossibility theorem” may not always be important in practice.
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Table 4: Multinomial rank-ordered probit results, n=135 - No correlation
between taste and visual

Variable Visual Taste
Fuji -0.1192 0.1087

(0.0975) (0.0968)
Golden Delicious −0.1628∗∗ −0.3409∗∗∗

(0.0797) (0.0982)
Jonagold 0.3022∗∗∗ -0.0607

(0.1120) (0.0784)
Red Delicious −0.9153∗∗∗ -0.1298

(0.1532) (0.1039)
Log-Likelihood -572.9 -625.9

Granny Smith coefficient normalized to 0. Numbers in parenthesis are standard errors.
*-90%, **-95%, and ***-99% significant.

tastes the best, while the Golden Delicious tastes the worst.
Tables 5 and 6 contain the variance/covariance matrix for visual and taste

unobservable characteristics. In order to interpret these covariance matrices
more easily, one can look to Table 7. In that table I forecast the probability
that each apple is chosen as the best apple both with all five apples, and
after taking out any one apple from the choice set.9 Each column sums to
100%, with a bullet point representing the omitted apple.

Remember that in the case of zero correlation between apples and ho-
moskedasticity, all off-diagonals (other than the first row and column) would
be 0.5. The high number, 0.681, in the (2,4) position of Table 5 is caused
by the high correlation between the Fuji and the Jonagold in unobserved
visual characteristics. This high correlation is to be expected, as the apples
have similar colorings (both are a mixture of red, green, and yellow). When
one looks at the substitution patterns in Table 7, one finds that after taking
Jonagold out of the choice set, the probit predicts that almost 6 percentage
points more of the people switch to preferring Fuji than would have under
the assumption of IIA.

The low number 0.310 in the (3,5) position of Table 5 would lead one

9To forecast these probabilities one must use the preferred-choice transformation matrix
rather than the rank-ordered transformation matrix (Mr). This is because I forecast
preferred choice, and not permutations of rankings.
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Table 5: Variance/covariance matrix for visual characteristics
Gr. Sm. Fuji Go. Del. Jona. Red Del.

Gr. Sm. 0.000 0.000 0.000 0.000 0.000
Fuji 0.000 1.000 0.447 0.681 0.497

Go. Del. 0.000 0.447 0.622 0.350 0.310
Jona. 0.000 0.681 0.350 1.187 0.343

Red Del. 0.000 0.497 0.310 0.343 1.411

Table 6: Variance/covariance matrix for taste characteristics
Gr. Sm. Fuji Go. Del. Jona. Red Del.

Gr. Sm. 0.000 0.000 0.000 0.000 0.000
Fuji 0.000 1.000 0.596 0.363 0.571

Go. Del. 0.000 0.596 0.912 0.406 0.527
Jona. 0.000 0.363 0.406 0.639 0.475

Red Del. 0.000 0.571 0.527 0.475 1.169

to believe that the correlation between Red Delicious and Golden Delicious
was very low, but the substitution patterns in Table 7 tell a different story.
The substitution patterns in Table 7 show what share of respondents would
be predicted to choose each apple as their first choice if one of the five ap-
ples were omitted from the choice set. So, looking at the column labeled
Granny Smith, we see that if Granny Smith had not been one of the options
then 20.92% of respondents are predicted to have preferred the looks of the
Golden Delicious apple rather than the 12.9% who are predicted to have pre-
ferred the looks of Golden Delicious when Granny Smith was also an option.
The number 0.0422 in parentheses tells us the difference between the share
of respondents predicted to prefer Golden Delicious under the rank-ordered
probit assumption and the share predicted under the IIA assumption. So,
we see that this prediction of 21% is 4 percentage points higher than the
prediction we would have estimated (17%) under IIA. Thus, the low number
0.310 in Table 5 arises because the visual correlation between Granny Smith
(the omitted apple) and Golden Delicious are high. These apples are green
and yellow respectively, and are the only two apples with no red coloring in
the choice set. Thus, the apples with low visual correlations are of different
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Table 7: Substitution patterns - No correlation between taste and visual

Gr. Sm. Fuji Go. Del. Jona. Red Del.
Visual Actual Forecast Forecast After Omission
Gr. Sm. 0.2370 0.2274 ∙ 0.2560 0.2790 0.3673 0.2519

(-0.0090) (0.0179) (-0.0273) (0.0052)
Fuji 0.1556 0.1418 0.1792 ∙ 0.1724 0.3063 0.1589

(-0.0043) (0.0096) (0.0602) (0.0051)
Go. Del. 0.1037 0.1290 0.2092 0.1624 ∙ 0.2152 0.1432

(0.0422) (0.0121) (-0.0086) (0.0033)
Jona. 0.4296 0.4237 0.5088 0.4906 0.4608 ∙ 0.4460

(-0.0396) (-0.0031) (-0.0257) (-0.0136)
Red Del. 0.0741 0.0781 0.1031 0.0912 0.0879 0.1112 ∙

(0.0020) (0.0002) (-0.0018) (-0.0243)
Taste Actual Forecast Forecast After Omission

Gr. Sm. 0.2667 0.2398 ∙ 0.3262 0.2598 0.3007 0.2866
(-0.0157) (-0.0038) (0.0133) (-0.0153)

Fuji 0.2963 0.2987 0.3742 ∙ 0.3328 0.3394 0.3716
(-0.0187) (0.0045) (-0.0186) (-0.0044)

Go. Del. 0.0815 0.0902 0.1219 0.1586 ∙ 0.1138 0.1164
(0.0033) (0.0300) (0.0057) (0.0028)

Jona. 0.1630 0.1657 0.2540 0.2296 0.1859 ∙ 0.2254
(0.0360) (-0.0067) (0.0038) (0.0168)

Red Del. 0.1926 0.2057 0.2502 0.2858 0.2216 0.2462 ∙
(-0.0204) (-0.0075) (-0.0045) (-0.0003)

Each column sums to 100. The last five columns represent the omission of a different
apple from the choice set. Numbers in parentheses are the difference between shares
predicted by rank-ordered probit and shares under IIA. For example, if one omitted

Granny Smith, then 51% of people are predicted to prefer the looks of Jonagold and this
is 4% less than IIA would have predicted.

colors while those with high correlations are of more similar coloring.
In Table 6, the high .596 in the (2,3) position shows a high correlation in

the unobserved taste characteristics between Fuji and Golden Delicious, and
the high 1.169 in the (5,5) position show a low correlation between the taste
characteristics of the Granny Smith and the Red Delicious apples. Both of
these results are born out in the substitution patterns. When Fuji is removed
almost 3 percentage points more of the people switch to Golden Delicious
than would have, and when Granny Smith is removed almost 2 percentage
points less switch to Red Delicious than would have under IIA.

For the marketing of apples in stores which carry different varieties of
apples, these correlations are extremely important, and could not be discov-

12



ered while using a simple logit specification given the IIA assumption. When
choosing an apple based on looks, consumers tend to choose based on color.
On the other hand, when they have the opportunity to taste the apples, they
tend to differentiate on the basis of sweetness versus tartness.

In Table 8, I estimate the visual and taste characteristic regressions (un-
der the assumption that the taste and visual unobserved characteristics are
uncorrelated). Each column in this table sums to 100%, but this table now
includes much more detail than did Table 7 since there are 25 different com-
binations of visual and taste first choices possible.

Previously I stated that after taking Jonagold out of the choice set, almost
6 percentage points more people are predicted to switch to Fuji as their visual
first choice than would have under the assumption of IIA. The second to last
column in Table 8 forecasts what will happen when removing Jonagold from
the choice set. Of the 6 percentage points more people who switch to Fuji
as their visual first choice, only 26% preferred the taste of Fuji. Most (36%)
preferred the taste of Granny Smith. While Fuji and Jonagold are similarly
colored apples, Fuji is sweet while Jonagold is tart. Thus, taking Jonagolds
out of the choice set often induces people to mistakenly predict that the Fuji
will taste better based on visual characteristics, when these people actually
prefer the taste of the Granny Smith. Similarly, people who like the taste of
the Granny Smith are more likely to switch to liking the looks of the Fuji,
perhaps thinking that it looks like it would be a tart apple.

4 Results - Correlated Errors between Taste

and Visual Regressions

This analysis can be taken one step further by allowing the errors to be
correlated between the taste and visual ranking regressions. Rather than
estimating 9 of the entries in the symmetric 5x5 correlation matrix shown in
table 3 as before, we must now estimate 34 of the entries in the symmetric
10x10 correlation matrix (9 of the entries for taste rankings, 9 of the entries
for visual rankings, and 16 of the entries for the correlation between taste
and visual characteristics). It would be possible to carry out such an analysis
with a third characteristic (e.g., smell) but we would then have to estimate
75 of the entries in the symmetric 15x15 correlation matrix (9 of the entries
for taste rankings, 9 of the entries for visual rankings, 9 of the entries for
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Table 8: Substitution patterns - No correlation between taste and visual

Gr. Sm. Fuji Go. Del. Jona. Red Del.
Visual Taste Actual Forecast Forecast After Omission

Gr. Sm. 0.0963 0.0545 ∙ 0.0835 0.0725 0.1104 0.0722
(-0.0071) (0.0037) (-0.0030) (-0.0023)

Granny Fuji 0.0296 0.0679 ∙ ∙ 0.0929 0.1246 0.0936
(0.0071) (-0.0166) (0.0008)

Smith Go. Del. 0.0222 0.0205 ∙ 0.0406 ∙ 0.0418 0.0293
(0.0065) (-0.0009) (0.0013)

Jona. 0.0593 0.0377 ∙ 0.0588 0.0519 ∙ 0.0568
(-0.0038) (0.0043) (0.0053)

Red Del. 0.0296 0.0468 ∙ 0.0731 0.0618 0.0904 ∙
(-0.0046) (0.0028) (-0.0069)

Gr. Sm. 0.0296 0.0340 ∙ ∙ 0.0448 0.0921 0.0456
(0.0019) (0.0214) (-0.0009)

Fuji 0.0963 0.0424 0.0670 ∙ 0.0574 0.1040 0.0591
(-0.0051) (0.0039) (0.0159) (0.0012)

Fuji Go. Del. 0.0000 0.0128 0.0218 ∙ ∙ 0.0349 0.0185
(0.0000) (0.0082) (0.0010)

Jona. 0.0074 0.0235 0.0455 ∙ 0.0320 ∙ 0.0358
(0.0055) (0.0024) (0.0037)

Red Del. 0.0222 0.0292 0.0448 ∙ 0.0382 0.0754 ∙
(-0.0048) (0.0014) (0.0148)

Gr. Sm. 0.0296 0.0309 ∙ 0.0530 ∙ 0.0647 0.0410
(0.0016) (0.0004) (-0.0012)

Golden Fuji 0.0370 0.0385 0.0783 ∙ ∙ 0.0730 0.0532
(0.0126) (-0.0071) (0.0006)

Delicious Go. Del. 0.0074 0.0116 0.0255 0.0258 ∙ 0.0245 0.0167
(0.0057) (0.0064) (0.0003) (0.0008)

Jona. 0.0222 0.0214 0.0531 0.0373 ∙ ∙ 0.0323
(0.0167) (0.0018) (0.0031)

Red Del. 0.0074 0.0265 0.0523 0.0464 ∙ 0.0530 ∙
(0.0071) (0.0023) (-0.0022)

Gr. Sm. 0.0889 0.1016 ∙ 0.1600 0.1197 ∙ 0.1278
(-0.0088) (-0.0085) (-0.0109)

Fuji 0.1259 0.1265 0.1903 ∙ 0.1533 ∙ 0.1657
(-0.0251) (-0.0063) (-0.0071)

Jonagold Go. Del. 0.0519 0.0382 0.0620 0.0778 ∙ ∙ 0.0519
(-0.0031) (0.0143) (-0.0003)

Jona. 0.0593 0.0702 0.1292 0.1126 0.0857 ∙ 0.1005
(0.0097) (-0.0040) (-0.0029) (0.0047)

Red Del. 0.1037 0.0871 0.1273 0.1402 0.1021 ∙ ∙
(-0.0211) (-0.0046) (-0.0079)

Gr. Sm. 0.0222 0.0187 ∙ 0.0297 0.0228 0.0334 ∙
(-0.0014) (-0.0008) (-0.0055)

Red Fuji 0.0074 0.0233 0.0386 ∙ 0.0293 0.0377 ∙
(-0.0011) (-0.0002) (-0.0108)

Delicious Go. Del. 0.0000 0.0070 0.0126 0.0145 ∙ 0.0127 ∙
(0.0006) (0.0028) (-0.0020)

Jona. 0.0148 0.0129 0.0262 0.0209 0.0164 ∙ ∙
(0.0042) (-0.0006) (0.0000)

Red Del. 0.0296 0.0161 0.0258 0.0261 0.0195 0.0274 ∙
(-0.0016) (-0.0006) (-0.0008) (-0.0060)

Each column sums to 100. The last five columns represent the omission of a different
apple from the choice set. Numbers in parentheses are the difference between shares
predicted by rank-ordered probit and shares under IIA. For example, if one omitted
Granny Smith, then 13% of people are predicted to prefer the looks and taste of

Jonagold and this is 1% more than IIA would have predicted.
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Table 9: Multinomial rank-ordered probit results, n=135 - Correlated errors
between taste and visual

Variable Visual Taste
Fuji -0.1399 0.0790

(0.1072) (0.1021)
Golden Delicious −0.1705∗ −0.3511∗∗∗

(0.0892) (0.1024)
Jonagold 0.2888∗∗ -0.0756

(0.1187) (0.0890)
Red Delicious −0.9367∗∗∗ -0.1591

(0.2044) (0.1161)
Log-Likelihood -1184.3

The coefficients for the Granny Smith apple has been normalized to 0. Numbers in
parenthesis are standard errors, *-90%, **-95%, and ***-99% significant.

smell rankings, 16 of the entries for the correlation between taste and visual,
16 of the entries for the correlation between taste and smell, and 16 of the
entries for the correlation between visual and smell). One would thus need
data from many respondents to be able to estimate models with three char-
acteristics, and data requirements for models with even more characteristics
would become yet more onerous.

Table 9 shows the coefficients from this new regression which, as expected,
are quite similar to those shown in Table 4 when assuming the errors in the
taste and visual regressions were not correlated. What changes more than the
coefficients on the apples, are the substitution patterns between the apples.
Table 10 is the counterpart to Table 7 after allowing the errors between the
taste and visual regressions to be correlated. We see differences between the
two tables in forecasts. If one omits Jonagold, more people switch to Granny
Smith and less to Fuji as both their first visual choice and their first taste
choice. Although the Jonagold and Fuji may look similar, the Jonagold is
more similar in flavor to the Granny Smith. Granny Smith and Jonagold
are both tart apples, while the other three are sweeter apples. Thus, the
similar coloring of the Fuji and Jonagold apples masks two very different
apples. Since the respondents were not told the varieties of the apples they
were looking at, it is not clear how much of this confusion would have been
cleared up by informing participants of the name of the variety, and how
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Table 10: Substitution patterns - Correlated errors between taste and visual

Gr. Sm. Fuji Go. Del. Jona. Red Del.
Visual Actual Forecast Forecast After Omission
Gr. Sm. 0.2370 0.2311 ∙ 0.2589 0.2822 0.3742 0.2564

(-0.0097) (0.0170) (-0.0245) (0.0051)
Fuji 0.1556 0.1397 0.1763 ∙ 0.1699 0.2985 0.1576

(-0.0054) (0.0096) (0.0575) (0.0057)
Go. Del. 0.1037 0.1285 0.2088 0.1615 ∙ 0.2150 0.1429

(0.0417) (0.0121) (-0.0067) (0.0032)
Jona. 0.4296 0.4204 0.5095 0.4862 0.4580 ∙ 0.4432

(-0.0372) (-0.0025) (-0.0244) (-0.0140)
Red Del. 0.0741 0.0804 0.1057 0.0937 0.0901 0.1124 ∙

(0.0011) (0.0002) (-0.0022) (-0.0263)
Taste Actual Forecast Forecast After Omission

Gr. Sm. 0.2667 0.2504 ∙ 0.3363 0.2715 0.3093 0.2985
(-0.0151) (-0.0038) (0.0098) (-0.0175)

Fuji 0.2963 0.2875 0.3677 ∙ 0.3207 0.3289 0.3580
(-0.0158) (0.0046) (-0.0150) (-0.0048)

Go. Del. 0.0815 0.0906 0.1258 0.1554 ∙ 0.1140 0.1184
(0.0049) (0.0282) (0.0056) (0.0041)

Jona. 0.1630 0.1640 0.2531 0.2280 0.1841 ∙ 0.2252
(0.0343) (-0.0022) (0.0038) (0.0182)

Red Del. 0.1926 0.2076 0.2537 0.2806 0.2239 0.2478 ∙
(-0.0232) (-0.0108) (-0.0044) (-0.0005)

Each column sums to 100. The last five columns represent the omission of a different
apple from the choice set. Numbers in parentheses are the difference between shares

predicted by rank-ordered probit and shares under IIA.

much could only be cleared up vis-a-vis a taste test or the availability of
more detailed information about apple characteristics.

Table 11 is likewise the counterpart to Table 8 after allowing the errors
between the taste and visual regressions to be correlated. More people are
predicted to accurately forecast from looking at the apples that they will
prefer the taste of Granny Smith, Fuji, Golden Delicious, or Red Delicious
than when ignoring the correlation between taste and visual rankings. On
the other hand, more people who like the looks of Jonagold are predicted to
actually like the taste of Fuji. More people who like the taste of Jonagold
are predicted to like the looks of Jonagold and Granny Smith (the two tart
apples). Also, more people who think they will like the Golden Delicious
apple when they look at it, are predicted to actually prefer the taste of the
Fuji, perhaps not recognizing this newer sweet variety. Recognizing that the
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Table 11: Substitution patterns - Correlated errors between taste and visual

Gr. Sm. Fuji Go. Del. Jona. Red Del.
Visual Taste Actual Forecast Forecast After Omission

Gr. Sm. 0.0963 0.0918 ∙ 0.1160 0.1135 0.1687 0.1157
(-0.0313) (-0.0016) (-0.0259) (-0.0094)

Granny Fuji 0.0296 0.0401 ∙ ∙ 0.0585 0.0886 0.0554
(0.0082) (0.0035) (0.0007)

Smith Go. Del. 0.0222 0.0114 ∙ 0.0192 ∙ 0.0281 0.0176
(0.0009) (0.0040) (0.0021)

Jona. 0.0593 0.0455 ∙ 0.0646 0.0582 ∙ 0.0677
(-0.0084) (0.0011) (0.0057)

Red Del. 0.0296 0.0422 ∙ 0.0591 0.0519 0.0887 ∙
(-0.0087) (-0.0010) (-0.0009)

Gr. Sm. 0.0296 0.0177 ∙ ∙ 0.0248 0.0527 0.0250
(0.0026) (0.0152) (0.0010)

Fuji 0.0963 0.0504 0.0669 ∙ 0.0691 0.1274 0.0693
(-0.0156) (0.0060) (0.0206) (0.0007)

Fuji Go. Del. 0.0000 0.0123 0.0170 ∙ ∙ 0.0357 0.0192
(-0.0032) (0.0095) (0.0024)

Jona. 0.0074 0.0276 0.0480 ∙ 0.0367 ∙ 0.0440
(0.0028) (0.0021) (0.0065)

Red Del. 0.0222 0.0318 0.0444 ∙ 0.0393 0.0828 ∙
(-0.0076) (-0.0005) (0.0154)

Gr. Sm. 0.0296 0.0308 ∙ 0.0507 ∙ 0.0585 0.0384
(0.0013) (-0.0068) (-0.0036)

Golden Fuji 0.0370 0.0424 0.0777 ∙ ∙ 0.0831 0.0537
(0.0082) (-0.0069) (-0.0041)

Delicious Go. Del. 0.0074 0.0167 0.0313 0.0354 ∙ 0.0340 0.0228
(0.0040) (0.0086) (-0.0014) (0.0001)

Jona. 0.0222 0.0195 0.0589 0.0384 ∙ ∙ 0.0280
(0.0269) (0.0071) (0.0014)

Red Del. 0.0074 0.0191 0.0409 0.0369 ∙ 0.0394 ∙
(0.0096) (0.0063) (-0.0010)

Gr. Sm. 0.0889 0.0932 ∙ 0.1463 0.1120 ∙ 0.1193
(-0.0032) (-0.0049) (-0.0076)

Fuji 0.1259 0.1375 0.1966 ∙ 0.1700 ∙ 0.1796
(-0.0286) (-0.0024) (-0.0076)

Jonagold Go. Del. 0.0519 0.0414 0.0635 0.0857 ∙ ∙ 0.0587
(-0.0042) (0.0194) (0.0024)

Jona. 0.0593 0.0558 0.1145 0.1014 0.0695 ∙ 0.0855
(0.0230) (0.0118) (-0.0005) (0.0094)

Red Del. 0.1037 0.0925 0.1349 0.1528 0.1066 ∙ ∙
(-0.0167) (0.0043) (-0.0094)

Gr. Sm. 0.0222 0.0169 ∙ 0.0233 0.0212 0.0294 ∙
(-0.0039) (0.0000) (-0.0065)

Red Fuji 0.0074 0.0171 0.0265 ∙ 0.0232 0.0299 ∙
(-0.0015) (0.0017) (-0.0064)

Delicious Go. Del. 0.0000 0.0089 0.0139 0.0151 ∙ 0.0162 ∙
(-0.0006) (0.0009) (-0.0026)

Jona. 0.0148 0.0155 0.0318 0.0235 0.0197 ∙ ∙
(0.0063) (-0.0014) (0.0002)

Red Del. 0.0296 0.0220 0.0334 0.0318 0.0260 0.0370 ∙
(-0.0026) (-0.0035) (-0.0016) (-0.0097)

Each column sums to 100. The last five columns represent the omission of a different
apple from the choice set. Numbers in parentheses are the difference between shares

predicted by rank-ordered probit and shares under IIA.
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errors in the taste and visual regressions may be correlated makes all of these
effects stronger.

We can also look at the predicted effects of omitting one variety on both
looks and taste ranking. If one takes out Granny Smith as a choice, more
people who prefer the looks of Fuji or Golden Delicious are predicted to prefer
the taste of Jonagold in comparison with the analysis ignoring correlations.
This suggests that people who like the tart taste of Jonagold do not always
realize that they will like it from looking at it. Likewise, if one takes out the
Jonagold, more people will like the looks and taste of Granny Smith than
did before taking into account the correlation.

5 Conclusions

This paper presents a new way of analyzing data from multiple rankings.
It applies the rank-ordered probit model with a GHK simulator and Halton
draws to data with visual and taste tests of apples allowing the errors in the
two regressions to have arbitrary correlation. The rank-ordered probit is not
difficult to implement and with the use of Halton draws its implementation
is quite computationally efficient.

This manner of analyzing data could be quite useful for marketing. I
find that, to increase customer satisfaction, placing tasters of apples next to
each variety would be greatly beneficial, especially for newer varieties such as
Fuji and Jonagold which may look more similar and be less commonly known.
Because consumers tend to have bad visual reactions to Red Delicious apples,
samples would be especially beneficial for Red Delicious growers. One could
not have inferred this detailed information using a logit specification, or
with uncorrelated errors between visual and taste rankings. Only with rank-
ordered probit and allowing a correlation between the errors can one deduce
such details.

Of course these results for marketing could be biased due to the fact
that the experiment is based on an extremely simplified consumer choice
experiment which ignores any interactions with prices or varieties (as the
respondents didn’t know which variety they were tasting). Another caveat
is that our sample may include both inexperienced shoppers and individuals
who do not typically buy apples. Giving away free samples would presum-
ably be more useful for the population in our experiment than for experienced
apple shoppers. In the future, it would be interesting to conduct these ex-
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periments with experienced buyers, and to ask them to rank apples based on
looks alone, based on taste alone, and based on both (since purchase decisions
probably depend on some weighted average of visual and taste rankings). In
addition, future investigations should incorporate data on apple prices and
study the effects of informing respondents as to the name of the varieties
they are choosing between.

Jin et al. (2008) investigate why branding is so much less prevalent for
produce compared to other consumer goods. They speculate that consumers
are able to predict quality of produce based on intrinsic external attributes
and thus branding may be less effective in conveying quality signals for fresh
produce. I find that people actually have a rather poor ability to predict
which apple they will like. As expected, people tend to prefer either the
visual characteristics of multi-colored apples, or the visual characteristics
of uni-colored apples. In terms of taste, they tend to prefer either sweeter
apples or tarter apples. Red Delicious apples may have a worse reputation
than they deserve. They are by far the least popular apple visually, but rank
higher in terms of taste.

The information on correlation of unobserved characteristics could also
help marketers decide which apples to place next to each other, and which
may be considered substitutes such that the presence of one will decrease the
share of consumers choosing the other. Moving away from the specific data in
this paper, this technique could also be used to combine consumers’ rankings
over multiple attributes of other products such as televisions (screen size,
ease of use, and picture quality) or shower cleaners (smell, skin irritation,
and form (spray versus foam versus powder)) as well as to combine revealed
and stated preference. In this way products could be designed which would
better target specific segments of the population.
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